Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47894 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4561 1.6566 0.8789 [M:[0.9583, 1.3055], q:[0.4791, 0.4791], qb:[0.4791, 0.4791], phi:[0.3472]] [M:[[3, 3, 3, 3], [2, 2, 2, 2]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -8 5*t^2.875 + 5*t^3.917 + 4*t^4.958 + 4*t^5.354 + 15*t^5.75 - 8*t^6. + 4*t^6.396 + 25*t^6.791 - 7*t^7.042 + 4*t^7.437 + 30*t^7.833 - 6*t^8.083 + 20*t^8.229 - 16*t^8.479 + 35*t^8.624 - 25*t^8.875 - t^4.042/y - t^5.083/y - (5*t^6.917)/y - (5*t^7.958)/y + (10*t^8.75)/y - t^4.042*y - t^5.083*y - 5*t^6.917*y - 5*t^7.958*y + 10*t^8.75*y g1^6*g3^6*t^2.875 + g2^6*g3^6*t^2.875 + g1^3*g2^3*g3^3*g4^3*t^2.875 + g1^6*g4^6*t^2.875 + g2^6*g4^6*t^2.875 + (g1^5*g3^5*t^3.917)/(g2*g4) + (g2^5*g3^5*t^3.917)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.917 + (g1^5*g4^5*t^3.917)/(g2*g3) + (g2^5*g4^5*t^3.917)/(g1*g3) + (g1^4*g3^4*t^4.958)/(g2^2*g4^2) + (g2^4*g3^4*t^4.958)/(g1^2*g4^2) + (g1^4*g4^4*t^4.958)/(g2^2*g3^2) + (g2^4*g4^4*t^4.958)/(g1^2*g3^2) + (g1^11*g2^5*t^5.354)/(g3*g4) + (g1^5*g2^11*t^5.354)/(g3*g4) + (g3^11*g4^5*t^5.354)/(g1*g2) + (g3^5*g4^11*t^5.354)/(g1*g2) + g1^12*g3^12*t^5.75 + g1^6*g2^6*g3^12*t^5.75 + g2^12*g3^12*t^5.75 + g1^9*g2^3*g3^9*g4^3*t^5.75 + g1^3*g2^9*g3^9*g4^3*t^5.75 + g1^12*g3^6*g4^6*t^5.75 + 3*g1^6*g2^6*g3^6*g4^6*t^5.75 + g2^12*g3^6*g4^6*t^5.75 + g1^9*g2^3*g3^3*g4^9*t^5.75 + g1^3*g2^9*g3^3*g4^9*t^5.75 + g1^12*g4^12*t^5.75 + g1^6*g2^6*g4^12*t^5.75 + g2^12*g4^12*t^5.75 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 - (g4^6*t^6.)/g3^6 + (g1^10*g2^4*t^6.396)/(g3^2*g4^2) + (g1^4*g2^10*t^6.396)/(g3^2*g4^2) + (g3^10*g4^4*t^6.396)/(g1^2*g2^2) + (g3^4*g4^10*t^6.396)/(g1^2*g2^2) + (g1^11*g3^11*t^6.791)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.791)/g4 + (g2^11*g3^11*t^6.791)/(g1*g4) + 2*g1^8*g2^2*g3^8*g4^2*t^6.791 + 2*g1^2*g2^8*g3^8*g4^2*t^6.791 + (2*g1^11*g3^5*g4^5*t^6.791)/g2 + 5*g1^5*g2^5*g3^5*g4^5*t^6.791 + (2*g2^11*g3^5*g4^5*t^6.791)/g1 + 2*g1^8*g2^2*g3^2*g4^8*t^6.791 + 2*g1^2*g2^8*g3^2*g4^8*t^6.791 + (g1^11*g4^11*t^6.791)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.791)/g3 + (g2^11*g4^11*t^6.791)/(g1*g3) - (g3^5*t^7.042)/(g1*g2*g4^7) - (g1^5*t^7.042)/(g2^7*g3*g4) - (3*t^7.042)/(g1*g2*g3*g4) - (g2^5*t^7.042)/(g1^7*g3*g4) - (g4^5*t^7.042)/(g1*g2*g3^7) - (g1^6*g2^6*t^7.437)/g3^6 - (g1^6*g2^6*t^7.437)/g4^6 + (g1^15*t^7.437)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.437)/(g3^3*g4^3) + (g1^3*g2^9*t^7.437)/(g3^3*g4^3) + (g2^15*t^7.437)/(g1^3*g3^3*g4^3) + (g3^15*t^7.437)/(g1^3*g2^3*g4^3) + (g3^9*g4^3*t^7.437)/(g1^3*g2^3) - (g3^6*g4^6*t^7.437)/g1^6 - (g3^6*g4^6*t^7.437)/g2^6 + (g3^3*g4^9*t^7.437)/(g1^3*g2^3) + (g4^15*t^7.437)/(g1^3*g2^3*g3^3) + (2*g1^10*g3^10*t^7.833)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.833)/g4^2 + (2*g2^10*g3^10*t^7.833)/(g1^2*g4^2) + g1^7*g2*g3^7*g4*t^7.833 + g1*g2^7*g3^7*g4*t^7.833 + (3*g1^10*g3^4*g4^4*t^7.833)/g2^2 + 6*g1^4*g2^4*g3^4*g4^4*t^7.833 + (3*g2^10*g3^4*g4^4*t^7.833)/g1^2 + g1^7*g2*g3*g4^7*t^7.833 + g1*g2^7*g3*g4^7*t^7.833 + (2*g1^10*g4^10*t^7.833)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.833)/g3^2 + (2*g2^10*g4^10*t^7.833)/(g1^2*g3^2) - (g3^4*t^8.083)/(g1^2*g2^2*g4^8) - (g1^4*t^8.083)/(g2^8*g3^2*g4^2) - (2*t^8.083)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.083)/(g1^8*g3^2*g4^2) - (g4^4*t^8.083)/(g1^2*g2^2*g3^8) + (g1^17*g2^5*g3^5*t^8.229)/g4 + (2*g1^11*g2^11*g3^5*t^8.229)/g4 + (g1^5*g2^17*g3^5*t^8.229)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.229 + g1^8*g2^14*g3^2*g4^2*t^8.229 + (g1^17*g2^5*g4^5*t^8.229)/g3 + (2*g1^11*g2^11*g4^5*t^8.229)/g3 + (g1^5*g2^17*g4^5*t^8.229)/g3 + (g1^5*g3^17*g4^5*t^8.229)/g2 + (g2^5*g3^17*g4^5*t^8.229)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.229 + (2*g1^5*g3^11*g4^11*t^8.229)/g2 + (2*g2^5*g3^11*g4^11*t^8.229)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.229 + (g1^5*g3^5*g4^17*t^8.229)/g2 + (g2^5*g3^5*g4^17*t^8.229)/g1 - (g1^11*t^8.479)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.479)/(g3*g4^7) - (g2^11*t^8.479)/(g1*g3*g4^7) - (g1^11*t^8.479)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.479)/(g3^7*g4) - (g2^11*t^8.479)/(g1*g3^7*g4) - (g3^11*t^8.479)/(g1*g2^7*g4) - (g3^11*t^8.479)/(g1^7*g2*g4) - (2*g3^5*g4^5*t^8.479)/(g1*g2^7) - (2*g3^5*g4^5*t^8.479)/(g1^7*g2) - (g4^11*t^8.479)/(g1*g2^7*g3) - (g4^11*t^8.479)/(g1^7*g2*g3) + g1^18*g3^18*t^8.624 + g1^12*g2^6*g3^18*t^8.624 + g1^6*g2^12*g3^18*t^8.624 + g2^18*g3^18*t^8.624 + g1^15*g2^3*g3^15*g4^3*t^8.624 + g1^9*g2^9*g3^15*g4^3*t^8.624 + g1^3*g2^15*g3^15*g4^3*t^8.624 + g1^18*g3^12*g4^6*t^8.624 + 3*g1^12*g2^6*g3^12*g4^6*t^8.624 + 3*g1^6*g2^12*g3^12*g4^6*t^8.624 + g2^18*g3^12*g4^6*t^8.624 + g1^15*g2^3*g3^9*g4^9*t^8.624 + 3*g1^9*g2^9*g3^9*g4^9*t^8.624 + g1^3*g2^15*g3^9*g4^9*t^8.624 + g1^18*g3^6*g4^12*t^8.624 + 3*g1^12*g2^6*g3^6*g4^12*t^8.624 + 3*g1^6*g2^12*g3^6*g4^12*t^8.624 + g2^18*g3^6*g4^12*t^8.624 + g1^15*g2^3*g3^3*g4^15*t^8.624 + g1^9*g2^9*g3^3*g4^15*t^8.624 + g1^3*g2^15*g3^3*g4^15*t^8.624 + g1^18*g4^18*t^8.624 + g1^12*g2^6*g4^18*t^8.624 + g1^6*g2^12*g4^18*t^8.624 + g2^18*g4^18*t^8.624 - 6*g1^6*g3^6*t^8.875 - (g1^12*g3^6*t^8.875)/g2^6 - 6*g2^6*g3^6*t^8.875 - (g2^12*g3^6*t^8.875)/g1^6 - (g1^6*g3^12*t^8.875)/g4^6 - (g2^6*g3^12*t^8.875)/g4^6 + (g1^9*g3^9*t^8.875)/(g2^3*g4^3) + (g1^3*g2^3*g3^9*t^8.875)/g4^3 + (g2^9*g3^9*t^8.875)/(g1^3*g4^3) + (g1^9*g3^3*g4^3*t^8.875)/g2^3 - g1^3*g2^3*g3^3*g4^3*t^8.875 + (g2^9*g3^3*g4^3*t^8.875)/g1^3 - 6*g1^6*g4^6*t^8.875 - (g1^12*g4^6*t^8.875)/g2^6 - 6*g2^6*g4^6*t^8.875 - (g2^12*g4^6*t^8.875)/g1^6 + (g1^9*g4^9*t^8.875)/(g2^3*g3^3) + (g1^3*g2^3*g4^9*t^8.875)/g3^3 + (g2^9*g4^9*t^8.875)/(g1^3*g3^3) - (g1^6*g4^12*t^8.875)/g3^6 - (g2^6*g4^12*t^8.875)/g3^6 - t^4.042/(g1*g2*g3*g4*y) - t^5.083/(g1^2*g2^2*g3^2*g4^2*y) - (g1^5*g3^5*t^6.917)/(g2*g4*y) - (g2^5*g3^5*t^6.917)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.917)/y - (g1^5*g4^5*t^6.917)/(g2*g3*y) - (g2^5*g4^5*t^6.917)/(g1*g3*y) - (g1^4*g3^4*t^7.958)/(g2^2*g4^2*y) - (g2^4*g3^4*t^7.958)/(g1^2*g4^2*y) - (g1*g2*g3*g4*t^7.958)/y - (g1^4*g4^4*t^7.958)/(g2^2*g3^2*y) - (g2^4*g4^4*t^7.958)/(g1^2*g3^2*y) + (g1^6*g2^6*g3^12*t^8.75)/y + (g1^9*g2^3*g3^9*g4^3*t^8.75)/y + (g1^3*g2^9*g3^9*g4^3*t^8.75)/y + (g1^12*g3^6*g4^6*t^8.75)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.75)/y + (g2^12*g3^6*g4^6*t^8.75)/y + (g1^9*g2^3*g3^3*g4^9*t^8.75)/y + (g1^3*g2^9*g3^3*g4^9*t^8.75)/y + (g1^6*g2^6*g4^12*t^8.75)/y - (t^4.042*y)/(g1*g2*g3*g4) - (t^5.083*y)/(g1^2*g2^2*g3^2*g4^2) - (g1^5*g3^5*t^6.917*y)/(g2*g4) - (g2^5*g3^5*t^6.917*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.917*y - (g1^5*g4^5*t^6.917*y)/(g2*g3) - (g2^5*g4^5*t^6.917*y)/(g1*g3) - (g1^4*g3^4*t^7.958*y)/(g2^2*g4^2) - (g2^4*g3^4*t^7.958*y)/(g1^2*g4^2) - g1*g2*g3*g4*t^7.958*y - (g1^4*g4^4*t^7.958*y)/(g2^2*g3^2) - (g2^4*g4^4*t^7.958*y)/(g1^2*g3^2) + g1^6*g2^6*g3^12*t^8.75*y + g1^9*g2^3*g3^9*g4^3*t^8.75*y + g1^3*g2^9*g3^9*g4^3*t^8.75*y + g1^12*g3^6*g4^6*t^8.75*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.75*y + g2^12*g3^6*g4^6*t^8.75*y + g1^9*g2^3*g3^3*g4^9*t^8.75*y + g1^3*g2^9*g3^3*g4^9*t^8.75*y + g1^6*g2^6*g4^12*t^8.75*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57364 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ 1.4543 1.647 0.883 [M:[0.9835, 1.3223], q:[0.4916, 0.4916], qb:[0.5084, 0.4753], phi:[0.3388]] 2*t^2.901 + t^2.95 + 2*t^3. + 2*t^3.917 + t^3.967 + 2*t^4.017 + 2*t^4.934 + 2*t^5.033 + t^5.394 + 2*t^5.441 + t^5.493 + 3*t^5.802 + 2*t^5.851 + 4*t^5.901 + 2*t^5.95 - 3*t^6. - t^4.017/y - t^5.033/y - t^4.017*y - t^5.033*y detail
57363 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ 1.4548 1.6497 0.8819 [M:[0.9764, 1.3176], q:[0.5, 0.4764], qb:[0.5, 0.4764], phi:[0.3412]] t^2.858 + 3*t^2.929 + t^3. + t^3.882 + 3*t^3.953 + t^4.024 + t^4.905 + 2*t^4.976 + t^5.047 + 2*t^5.382 + 2*t^5.453 + t^5.716 + 3*t^5.787 + 7*t^5.858 + t^5.929 - 3*t^6. - t^4.024/y - t^5.047/y - t^4.024*y - t^5.047*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47870 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ 1.4767 1.6956 0.8709 [M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] t^2.078 + 5*t^2.883 + 4*t^3.922 + t^4.156 + 9*t^4.961 + 4*t^5.363 + 15*t^5.766 - 4*t^6. - t^4.039/y - t^5.078/y - t^4.039*y - t^5.078*y detail