Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46865 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ 0.7686 0.9726 0.7902 [M:[0.7511, 0.8907, 1.0, 0.8603, 1.0, 0.7511, 0.6715], q:[0.5546, 0.6943], qb:[0.5546, 0.4454], phi:[0.4378]] [M:[[-4, 1, 8], [0, 0, 8], [0, -1, -4], [-4, 0, -4], [0, 1, 4], [-4, -1, 0], [1, 0, -9]], q:[[0, -1, -8], [4, 0, 0]], qb:[[0, 1, 0], [0, 0, 4]], phi:[[-1, 0, 1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ ${}M_{3}^{2}$, ${ }M_{5}^{2}$ -3 t^2.015 + 2*t^2.253 + t^2.581 + t^2.627 + t^2.672 + 2*t^3. + t^4.029 + 2*t^4.268 + 2*t^4.313 + 3*t^4.506 + t^4.595 + 4*t^4.641 + t^4.687 + t^4.732 + 2*t^4.834 + 2*t^4.88 + 2*t^4.925 + 2*t^5.015 + 2*t^5.06 + t^5.162 + t^5.208 + 5*t^5.253 + t^5.299 + t^5.344 + t^5.479 + 2*t^5.627 - 3*t^6. + t^6.044 + 2*t^6.282 - 2*t^6.419 + 3*t^6.521 + 3*t^6.566 + t^6.61 + 4*t^6.656 + t^6.701 - t^6.747 + 4*t^6.76 + 2*t^6.849 + 8*t^6.894 + 4*t^6.94 + 2*t^6.985 + 2*t^7.029 + 2*t^7.075 + 3*t^7.087 + 3*t^7.133 + t^7.176 + 3*t^7.179 + 4*t^7.222 + 8*t^7.268 + 7*t^7.313 + t^7.359 + t^7.405 + 2*t^7.415 + 2*t^7.461 + t^7.494 + 8*t^7.506 + 2*t^7.552 + 2*t^7.598 + 6*t^7.641 + 2*t^7.732 + t^7.743 + t^7.789 + 2*t^7.834 + 5*t^7.88 + t^7.925 + t^7.971 - 6*t^8.015 + t^8.017 + t^8.058 - t^8.06 + t^8.151 - 6*t^8.253 + 2*t^8.297 - 2*t^8.388 - 4*t^8.434 + 3*t^8.535 - 6*t^8.581 + t^8.625 - 3*t^8.627 + 4*t^8.67 - 8*t^8.672 + t^8.716 - t^8.761 + 4*t^8.774 - t^8.807 + 4*t^8.82 - t^8.853 + 2*t^8.863 + 6*t^8.909 + 6*t^8.954 - t^4.313/y - t^6.328/y - (2*t^6.566)/y - t^6.894/y - t^6.94/y - t^6.985/y + (2*t^7.268)/y + t^7.506/y + t^7.595/y + (2*t^7.641)/y + (2*t^7.687)/y + t^7.732/y + (2*t^7.834)/y + (2*t^7.88)/y + (2*t^7.925)/y + (2*t^8.015)/y + (2*t^8.06)/y + t^8.208/y + (5*t^8.253)/y + (2*t^8.299)/y - t^8.342/y + (2*t^8.627)/y + (2*t^8.672)/y - (3*t^8.82)/y - t^8.909/y - t^8.954/y - t^4.313*y - t^6.328*y - 2*t^6.566*y - t^6.894*y - t^6.94*y - t^6.985*y + 2*t^7.268*y + t^7.506*y + t^7.595*y + 2*t^7.641*y + 2*t^7.687*y + t^7.732*y + 2*t^7.834*y + 2*t^7.88*y + 2*t^7.925*y + 2*t^8.015*y + 2*t^8.06*y + t^8.208*y + 5*t^8.253*y + 2*t^8.299*y - t^8.342*y + 2*t^8.627*y + 2*t^8.672*y - 3*t^8.82*y - t^8.909*y - t^8.954*y (g1*t^2.015)/g3^9 + t^2.253/(g1^4*g2) + (g2*g3^8*t^2.253)/g1^4 + t^2.581/(g1^4*g3^4) + (g3^2*t^2.627)/g1^2 + g3^8*t^2.672 + t^3./(g2*g3^4) + g2*g3^4*t^3. + (g1^2*t^4.029)/g3^18 + t^4.268/(g1^3*g2*g3^9) + (g2*t^4.268)/(g1^3*g3) + t^4.313/(g1*g2*g3^3) + (g2*g3^5*t^4.313)/g1 + t^4.506/(g1^8*g2^2) + (g3^8*t^4.506)/g1^8 + (g2^2*g3^16*t^4.506)/g1^8 + t^4.595/(g1^3*g3^13) + t^4.641/(g1*g2^2*g3^15) + (2*t^4.641)/(g1*g3^7) + (g2^2*g3*t^4.641)/g1 + (g1*t^4.687)/g3 + g1^3*g3^5*t^4.732 + t^4.834/(g1^8*g2*g3^4) + (g2*g3^4*t^4.834)/g1^8 + (g3^2*t^4.88)/(g1^6*g2) + (g2*g3^10*t^4.88)/g1^6 + (g3^8*t^4.925)/(g1^4*g2) + (g2*g3^16*t^4.925)/g1^4 + (g1*t^5.015)/(g2*g3^13) + (g1*g2*t^5.015)/g3^5 + (g1^3*t^5.06)/(g2*g3^7) + g1^3*g2*g3*t^5.06 + t^5.162/(g1^8*g3^8) + t^5.208/(g1^6*g3^2) + t^5.253/(g1^4*g2^2*g3^4) + (3*g3^4*t^5.253)/g1^4 + (g2^2*g3^12*t^5.253)/g1^4 + (g3^10*t^5.299)/g1^2 + g3^16*t^5.344 + g1^7*g3*t^5.479 + t^5.627/(g1^2*g2*g3^2) + (g2*g3^6*t^5.627)/g1^2 - 3*t^6. + (g1^3*t^6.044)/g3^27 + t^6.282/(g1^2*g2*g3^18) + (g2*t^6.282)/(g1^2*g3^10) - (g1^4*t^6.419)/g2 - g1^4*g2*g3^8*t^6.419 + t^6.521/(g1^7*g2^2*g3^9) + t^6.521/(g1^7*g3) + (g2^2*g3^7*t^6.521)/g1^7 + t^6.566/(g1^5*g2^2*g3^3) + (g3^5*t^6.566)/g1^5 + (g2^2*g3^13*t^6.566)/g1^5 + t^6.61/(g1^2*g3^22) + t^6.656/(g2^2*g3^24) + (2*t^6.656)/g3^16 + (g2^2*t^6.656)/g3^8 + (g1^2*t^6.701)/g3^10 - (g1^4*t^6.747)/g3^4 + t^6.76/(g1^12*g2^3) + (g3^8*t^6.76)/(g1^12*g2) + (g2*g3^16*t^6.76)/g1^12 + (g2^3*g3^24*t^6.76)/g1^12 + t^6.849/(g1^7*g2*g3^13) + (g2*t^6.849)/(g1^7*g3^5) + t^6.894/(g1^5*g2^3*g3^15) + (3*t^6.894)/(g1^5*g2*g3^7) + (3*g2*g3*t^6.894)/g1^5 + (g2^3*g3^9*t^6.894)/g1^5 + (2*t^6.94)/(g1^3*g2*g3) + (2*g2*g3^7*t^6.94)/g1^3 + (g3^5*t^6.985)/(g1*g2) + (g2*g3^13*t^6.985)/g1 + (g1^2*t^7.029)/(g2*g3^22) + (g1^2*g2*t^7.029)/g3^14 + (g1^4*t^7.075)/(g2*g3^16) + (g1^4*g2*t^7.075)/g3^8 + t^7.087/(g1^12*g2^2*g3^4) + (g3^4*t^7.087)/g1^12 + (g2^2*g3^12*t^7.087)/g1^12 + (g3^2*t^7.133)/(g1^10*g2^2) + (g3^10*t^7.133)/g1^10 + (g2^2*g3^18*t^7.133)/g1^10 + t^7.176/(g1^7*g3^17) + (g3^8*t^7.179)/(g1^8*g2^2) + (g3^16*t^7.179)/g1^8 + (g2^2*g3^24*t^7.179)/g1^8 + t^7.222/(g1^5*g2^2*g3^19) + (2*t^7.222)/(g1^5*g3^11) + (g2^2*t^7.222)/(g1^5*g3^3) + (2*t^7.268)/(g1^3*g2^2*g3^13) + (4*t^7.268)/(g1^3*g3^5) + (2*g2^2*g3^3*t^7.268)/g1^3 + (2*t^7.313)/(g1*g2^2*g3^7) + (3*g3*t^7.313)/g1 + (2*g2^2*g3^9*t^7.313)/g1 + g1*g3^7*t^7.359 + g1^3*g3^13*t^7.405 + (g2*t^7.415)/g1^12 + t^7.415/(g1^12*g2*g3^8) + t^7.461/(g1^10*g2*g3^2) + (g2*g3^6*t^7.461)/g1^10 + (g1^8*t^7.494)/g3^8 + t^7.506/(g1^8*g2^3*g3^4) + (3*g3^4*t^7.506)/(g1^8*g2) + (3*g2*g3^12*t^7.506)/g1^8 + (g2^3*g3^20*t^7.506)/g1^8 + (g3^10*t^7.552)/(g1^6*g2) + (g2*g3^18*t^7.552)/g1^6 + (g3^16*t^7.598)/(g1^4*g2) + (g2*g3^24*t^7.598)/g1^4 + t^7.641/(g1*g2^3*g3^19) + (2*t^7.641)/(g1*g2*g3^11) + (2*g2*t^7.641)/(g1*g3^3) + (g2^3*g3^5*t^7.641)/g1 + (g1^3*g3*t^7.732)/g2 + g1^3*g2*g3^9*t^7.732 + t^7.743/(g1^12*g3^12) + t^7.789/(g1^10*g3^6) + (2*t^7.834)/g1^8 + t^7.88/(g1^6*g2^2*g3^2) + (3*g3^6*t^7.88)/g1^6 + (g2^2*g3^14*t^7.88)/g1^6 + (g3^12*t^7.925)/g1^4 + (g3^18*t^7.971)/g1^2 - (g1*t^8.015)/(g2^2*g3^17) - (4*g1*t^8.015)/g3^9 - (g1*g2^2*t^8.015)/g3 + g3^24*t^8.017 + (g1^4*t^8.058)/g3^36 - (g1^3*t^8.06)/g3^3 + g1^7*g3^9*t^8.151 - (3*t^8.253)/(g1^4*g2) - (3*g2*g3^8*t^8.253)/g1^4 + t^8.297/(g1*g2*g3^27) + (g2*t^8.297)/(g1*g3^19) - (g1^3*t^8.388)/(g2*g3^15) - (g1^3*g2*t^8.388)/g3^7 - (2*g1^5*t^8.434)/(g2*g3^9) - (2*g1^5*g2*t^8.434)/g3 + t^8.535/(g1^6*g2^2*g3^18) + t^8.535/(g1^6*g3^10) + (g2^2*t^8.535)/(g1^6*g3^2) - t^8.581/(g1^4*g2^2*g3^12) - (4*t^8.581)/(g1^4*g3^4) - (g2^2*g3^4*t^8.581)/g1^4 + t^8.625/(g1*g3^31) - (3*g3^2*t^8.627)/g1^2 + (g1*t^8.67)/(g2^2*g3^33) + (2*g1*t^8.67)/g3^25 + (g1*g2^2*t^8.67)/g3^17 - t^8.672/g2^2 - 6*g3^8*t^8.672 - g2^2*g3^16*t^8.672 + (g1^3*t^8.716)/g3^19 - (g1^5*t^8.761)/g3^13 + t^8.774/(g1^11*g2^3*g3^9) + t^8.774/(g1^11*g2*g3) + (g2*g3^7*t^8.774)/g1^11 + (g2^3*g3^15*t^8.774)/g1^11 - (g1^7*t^8.807)/g3^7 + t^8.82/(g1^9*g2^3*g3^3) + (g3^5*t^8.82)/(g1^9*g2) + (g2*g3^13*t^8.82)/g1^9 + (g2^3*g3^21*t^8.82)/g1^9 - (g1^9*t^8.853)/g3 + t^8.863/(g1^6*g2*g3^22) + (g2*t^8.863)/(g1^6*g3^14) + (g2^3*t^8.909)/g1^4 + t^8.909/(g1^4*g2^3*g3^24) + (2*t^8.909)/(g1^4*g2*g3^16) + (2*g2*t^8.909)/(g1^4*g3^8) + t^8.954/(g1^2*g2^3*g3^18) + (2*t^8.954)/(g1^2*g2*g3^10) + (2*g2*t^8.954)/(g1^2*g3^2) + (g2^3*g3^6*t^8.954)/g1^2 - (g3*t^4.313)/(g1*y) - t^6.328/(g3^8*y) - (g3*t^6.566)/(g1^5*g2*y) - (g2*g3^9*t^6.566)/(g1^5*y) - t^6.894/(g1^5*g3^3*y) - (g3^3*t^6.94)/(g1^3*y) - (g3^9*t^6.985)/(g1*y) + t^7.268/(g1^3*g2*g3^9*y) + (g2*t^7.268)/(g1^3*g3*y) + (g3^8*t^7.506)/(g1^8*y) + t^7.595/(g1^3*g3^13*y) + (2*t^7.641)/(g1*g3^7*y) + (2*g1*t^7.687)/(g3*y) + (g1^3*g3^5*t^7.732)/y + t^7.834/(g1^8*g2*g3^4*y) + (g2*g3^4*t^7.834)/(g1^8*y) + (g3^2*t^7.88)/(g1^6*g2*y) + (g2*g3^10*t^7.88)/(g1^6*y) + (g3^8*t^7.925)/(g1^4*g2*y) + (g2*g3^16*t^7.925)/(g1^4*y) + (g1*t^8.015)/(g2*g3^13*y) + (g1*g2*t^8.015)/(g3^5*y) + (g1^3*t^8.06)/(g2*g3^7*y) + (g1^3*g2*g3*t^8.06)/y + t^8.208/(g1^6*g3^2*y) + t^8.253/(g1^4*g2^2*g3^4*y) + (3*g3^4*t^8.253)/(g1^4*y) + (g2^2*g3^12*t^8.253)/(g1^4*y) + (2*g3^10*t^8.299)/(g1^2*y) - (g1*t^8.342)/(g3^17*y) + t^8.627/(g1^2*g2*g3^2*y) + (g2*g3^6*t^8.627)/(g1^2*y) + (g3^4*t^8.672)/(g2*y) + (g2*g3^12*t^8.672)/y - (g3*t^8.82)/(g1^9*g2^2*y) - (g3^9*t^8.82)/(g1^9*y) - (g2^2*g3^17*t^8.82)/(g1^9*y) - t^8.909/(g1^4*g3^12*y) - t^8.954/(g1^2*g3^6*y) - (g3*t^4.313*y)/g1 - (t^6.328*y)/g3^8 - (g3*t^6.566*y)/(g1^5*g2) - (g2*g3^9*t^6.566*y)/g1^5 - (t^6.894*y)/(g1^5*g3^3) - (g3^3*t^6.94*y)/g1^3 - (g3^9*t^6.985*y)/g1 + (t^7.268*y)/(g1^3*g2*g3^9) + (g2*t^7.268*y)/(g1^3*g3) + (g3^8*t^7.506*y)/g1^8 + (t^7.595*y)/(g1^3*g3^13) + (2*t^7.641*y)/(g1*g3^7) + (2*g1*t^7.687*y)/g3 + g1^3*g3^5*t^7.732*y + (t^7.834*y)/(g1^8*g2*g3^4) + (g2*g3^4*t^7.834*y)/g1^8 + (g3^2*t^7.88*y)/(g1^6*g2) + (g2*g3^10*t^7.88*y)/g1^6 + (g3^8*t^7.925*y)/(g1^4*g2) + (g2*g3^16*t^7.925*y)/g1^4 + (g1*t^8.015*y)/(g2*g3^13) + (g1*g2*t^8.015*y)/g3^5 + (g1^3*t^8.06*y)/(g2*g3^7) + g1^3*g2*g3*t^8.06*y + (t^8.208*y)/(g1^6*g3^2) + (t^8.253*y)/(g1^4*g2^2*g3^4) + (3*g3^4*t^8.253*y)/g1^4 + (g2^2*g3^12*t^8.253*y)/g1^4 + (2*g3^10*t^8.299*y)/g1^2 - (g1*t^8.342*y)/g3^17 + (t^8.627*y)/(g1^2*g2*g3^2) + (g2*g3^6*t^8.627*y)/g1^2 + (g3^4*t^8.672*y)/g2 + g2*g3^12*t^8.672*y - (g3*t^8.82*y)/(g1^9*g2^2) - (g3^9*t^8.82*y)/g1^9 - (g2^2*g3^17*t^8.82*y)/g1^9 - (t^8.909*y)/(g1^4*g3^12) - (t^8.954*y)/(g1^2*g3^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55151 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{4}$ 0.7342 0.9219 0.7964 [M:[0.9538, 0.8541, 0.9466, 1.0462, 1.0534, 0.847, 0.6708], q:[0.5195, 0.5267], qb:[0.6263, 0.4271], phi:[0.4751]] t^2.012 + t^2.541 + t^2.562 + t^2.84 + t^2.851 + t^2.861 + t^3.139 + t^3.16 + t^4.025 + t^4.265 + t^4.287 + t^4.543 + t^4.553 + t^4.564 + t^4.575 + 2*t^4.585 + t^4.852 + 2*t^4.863 + t^4.874 + t^4.884 + t^5.082 + t^5.103 + t^5.125 + t^5.151 + t^5.173 + t^5.183 + t^5.381 + t^5.391 + t^5.402 + t^5.413 + t^5.424 + t^5.68 + t^5.69 + 2*t^5.701 + t^5.712 + t^5.723 + t^5.989 - 2*t^6. - t^4.425/y - t^4.425*y detail
55046 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{2}X_{1}$ 0.6852 0.8517 0.8045 [X:[1.3319], M:[0.7815, 0.6681, 1.0, 1.1135, 1.0, 0.7815, 0.8865], q:[0.666, 0.5525], qb:[0.666, 0.334], phi:[0.4454]] 2*t^2.345 + t^2.66 + t^2.672 + 2*t^3. + t^3.34 + 2*t^3.996 + 2*t^4.336 + t^4.651 + 3*t^4.689 + 2*t^4.992 + 2*t^5.017 + t^5.319 + 4*t^5.332 + 4*t^5.345 + 2*t^5.672 + 2*t^5.685 - 2*t^6. - t^4.336/y - t^4.336*y detail
55113 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ 0.7543 0.9473 0.7962 [M:[0.8235, 0.8235, 1.0, 1.0, 1.0, 0.8235, 0.7207], q:[0.5883, 0.5883], qb:[0.5883, 0.4117], phi:[0.4559]] t^2.162 + 3*t^2.47 + t^2.735 + 3*t^3. + t^4.324 + 3*t^4.368 + 3*t^4.632 + 7*t^4.897 + 6*t^4.941 + 3*t^5.162 + 3*t^5.206 + 7*t^5.47 + 3*t^5.735 - 4*t^6. - t^4.368/y - t^4.368*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46406 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ 0.7478 0.9314 0.8029 [M:[0.7502, 0.889, 1.0, 0.8612, 1.0, 0.7502], q:[0.5555, 0.6943], qb:[0.5555, 0.4445], phi:[0.4375]] 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y detail