Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1404 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ | 0.7686 | 0.9726 | 0.7902 | [X:[], M:[1.0, 0.7511, 0.8907, 0.8603, 1.0, 0.7511, 0.6715], q:[0.5546, 0.4454], qb:[0.5546, 0.6943], phi:[0.4378]] | [X:[], M:[[0, 0], [-4, -4], [-8, 0], [4, -4], [0, 0], [-4, -4], [9, 1]], q:[[4, 0], [-4, 0]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_2$, $ M_6$, $ M_4$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_5$, $ M_7^2$, $ M_2M_7$, $ M_6M_7$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ M_2M_6$, $ M_6^2$, $ M_4M_7$, $ M_7\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_3M_7$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_4$, $ M_4M_6$, $ M_2\phi_1^2$, $ M_6\phi_1^2$, $ M_2M_3$, $ M_3M_6$, $ M_1M_7$, $ M_5M_7$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ M_2M_5$, $ M_1M_6$, $ M_5M_6$, $ \phi_1^4$, $ M_3\phi_1^2$, $ M_3^2$, $ \phi_1\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_5\phi_1^2$ | $M_1M_5$ | -3 | t^2.01 + 2*t^2.25 + t^2.58 + t^2.63 + t^2.67 + 2*t^3. + t^4.03 + 2*t^4.27 + 2*t^4.31 + 3*t^4.51 + t^4.6 + 4*t^4.64 + t^4.69 + t^4.73 + 2*t^4.83 + 2*t^4.88 + 2*t^4.93 + 2*t^5.01 + 2*t^5.06 + t^5.16 + t^5.21 + 5*t^5.25 + t^5.3 + t^5.34 + t^5.48 + 2*t^5.63 - 3*t^6. + t^6.04 + 2*t^6.28 - 2*t^6.42 + 3*t^6.52 + 3*t^6.57 + t^6.61 + 4*t^6.66 + t^6.7 - t^6.75 + 4*t^6.76 + 2*t^6.85 + 8*t^6.89 + 4*t^6.94 + 2*t^6.99 + 2*t^7.03 + 2*t^7.07 + 3*t^7.09 + 3*t^7.13 + 4*t^7.18 + 4*t^7.22 + 8*t^7.27 + 7*t^7.31 + t^7.36 + t^7.4 + 2*t^7.42 + 2*t^7.46 + t^7.49 + 8*t^7.51 + 2*t^7.55 + 2*t^7.6 + 6*t^7.64 + 2*t^7.73 + t^7.74 + t^7.79 + 2*t^7.83 + 5*t^7.88 + t^7.93 + t^7.97 - 6*t^8.01 + t^8.02 + t^8.15 - 6*t^8.25 + 2*t^8.3 - 2*t^8.39 - 4*t^8.43 + 3*t^8.54 - 6*t^8.58 + t^8.62 - 3*t^8.63 - 4*t^8.67 + t^8.72 - t^8.76 + 4*t^8.77 - t^8.81 + 4*t^8.82 - t^8.85 + 2*t^8.86 + 6*t^8.91 + 6*t^8.95 - t^4.31/y - t^6.33/y - (2*t^6.57)/y - t^6.89/y - t^6.94/y - t^6.99/y + (2*t^7.27)/y + t^7.51/y + t^7.6/y + (2*t^7.64)/y + (2*t^7.69)/y + t^7.73/y + (2*t^7.83)/y + (2*t^7.88)/y + (2*t^7.93)/y + (2*t^8.01)/y + (2*t^8.06)/y + t^8.21/y + (5*t^8.25)/y + (2*t^8.3)/y - t^8.34/y + (2*t^8.63)/y + (2*t^8.67)/y - (3*t^8.82)/y - t^8.91/y - t^8.95/y - t^4.31*y - t^6.33*y - 2*t^6.57*y - t^6.89*y - t^6.94*y - t^6.99*y + 2*t^7.27*y + t^7.51*y + t^7.6*y + 2*t^7.64*y + 2*t^7.69*y + t^7.73*y + 2*t^7.83*y + 2*t^7.88*y + 2*t^7.93*y + 2*t^8.01*y + 2*t^8.06*y + t^8.21*y + 5*t^8.25*y + 2*t^8.3*y - t^8.34*y + 2*t^8.63*y + 2*t^8.67*y - 3*t^8.82*y - t^8.91*y - t^8.95*y | g1^9*g2*t^2.01 + (2*t^2.25)/(g1^4*g2^4) + (g1^4*t^2.58)/g2^4 + t^2.63/(g1^2*g2^2) + t^2.67/g1^8 + 2*t^3. + g1^18*g2^2*t^4.03 + (2*g1^5*t^4.27)/g2^3 + (2*t^4.31)/(g1*g2) + (3*t^4.51)/(g1^8*g2^8) + (g1^13*t^4.6)/g2^3 + (4*g1^7*t^4.64)/g2 + g1*g2*t^4.69 + (g2^3*t^4.73)/g1^5 + (2*t^4.83)/g2^8 + (2*t^4.88)/(g1^6*g2^6) + (2*t^4.93)/(g1^12*g2^4) + 2*g1^9*g2*t^5.01 + 2*g1^3*g2^3*t^5.06 + (g1^8*t^5.16)/g2^8 + (g1^2*t^5.21)/g2^6 + (5*t^5.25)/(g1^4*g2^4) + t^5.3/(g1^10*g2^2) + t^5.34/g1^16 + (g2^7*t^5.48)/g1 + (2*t^5.63)/(g1^2*g2^2) - 3*t^6. + g1^27*g2^3*t^6.04 + (2*g1^14*t^6.28)/g2^2 - (2*g2^4*t^6.42)/g1^4 + (3*g1*t^6.52)/g2^7 + (3*t^6.57)/(g1^5*g2^5) + (g1^22*t^6.61)/g2^2 + 4*g1^16*t^6.66 + g1^10*g2^2*t^6.7 - g1^4*g2^4*t^6.75 + (4*t^6.76)/(g1^12*g2^12) + (2*g1^9*t^6.85)/g2^7 + (8*g1^3*t^6.89)/g2^5 + (4*t^6.94)/(g1^3*g2^3) + (2*t^6.99)/(g1^9*g2) + 2*g1^18*g2^2*t^7.03 + 2*g1^12*g2^4*t^7.07 + (3*t^7.09)/(g1^4*g2^12) + (3*t^7.13)/(g1^10*g2^10) + (3*t^7.18)/(g1^16*g2^8) + (g1^17*t^7.18)/g2^7 + (4*g1^11*t^7.22)/g2^5 + (8*g1^5*t^7.27)/g2^3 + (7*t^7.31)/(g1*g2) + (g2*t^7.36)/g1^7 + (g2^3*t^7.4)/g1^13 + (2*g1^4*t^7.42)/g2^12 + (2*t^7.46)/(g1^2*g2^10) + g1^8*g2^8*t^7.49 + (8*t^7.51)/(g1^8*g2^8) + (2*t^7.55)/(g1^14*g2^6) + (2*t^7.6)/(g1^20*g2^4) + (6*g1^7*t^7.64)/g2 + (2*g2^3*t^7.73)/g1^5 + (g1^12*t^7.74)/g2^12 + (g1^6*t^7.79)/g2^10 + (2*t^7.83)/g2^8 + (5*t^7.88)/(g1^6*g2^6) + t^7.93/(g1^12*g2^4) + t^7.97/(g1^18*g2^2) - 6*g1^9*g2*t^8.01 + t^8.02/g1^24 - g1^3*g2^3*t^8.06 + g1^36*g2^4*t^8.06 + (g2^7*t^8.15)/g1^9 - (6*t^8.25)/(g1^4*g2^4) + (2*g1^23*t^8.3)/g2 - 2*g1^11*g2^3*t^8.39 - 4*g1^5*g2^5*t^8.43 + (3*g1^10*t^8.54)/g2^6 - (6*g1^4*t^8.58)/g2^4 + (g1^31*t^8.62)/g2 - (3*t^8.63)/(g1^2*g2^2) - (8*t^8.67)/g1^8 + 4*g1^25*g2*t^8.67 + g1^19*g2^3*t^8.72 - g1^13*g2^5*t^8.76 + (4*t^8.77)/(g1^3*g2^11) - g1^7*g2^7*t^8.81 + (4*t^8.82)/(g1^9*g2^9) - g1*g2^9*t^8.85 + (2*g1^18*t^8.86)/g2^6 + (6*g1^12*t^8.91)/g2^4 + (6*g1^6*t^8.95)/g2^2 - t^4.31/(g1*g2*y) - (g1^8*t^6.33)/y - (2*t^6.57)/(g1^5*g2^5*y) - (g1^3*t^6.89)/(g2^5*y) - t^6.94/(g1^3*g2^3*y) - t^6.99/(g1^9*g2*y) + (2*g1^5*t^7.27)/(g2^3*y) + t^7.51/(g1^8*g2^8*y) + (g1^13*t^7.6)/(g2^3*y) + (2*g1^7*t^7.64)/(g2*y) + (2*g1*g2*t^7.69)/y + (g2^3*t^7.73)/(g1^5*y) + (2*t^7.83)/(g2^8*y) + (2*t^7.88)/(g1^6*g2^6*y) + (2*t^7.93)/(g1^12*g2^4*y) + (2*g1^9*g2*t^8.01)/y + (2*g1^3*g2^3*t^8.06)/y + (g1^2*t^8.21)/(g2^6*y) + (5*t^8.25)/(g1^4*g2^4*y) + (2*t^8.3)/(g1^10*g2^2*y) - (g1^17*g2*t^8.34)/y + (2*t^8.63)/(g1^2*g2^2*y) + (2*t^8.67)/(g1^8*y) - (3*t^8.82)/(g1^9*g2^9*y) - (g1^12*t^8.91)/(g2^4*y) - (g1^6*t^8.95)/(g2^2*y) - (t^4.31*y)/(g1*g2) - g1^8*t^6.33*y - (2*t^6.57*y)/(g1^5*g2^5) - (g1^3*t^6.89*y)/g2^5 - (t^6.94*y)/(g1^3*g2^3) - (t^6.99*y)/(g1^9*g2) + (2*g1^5*t^7.27*y)/g2^3 + (t^7.51*y)/(g1^8*g2^8) + (g1^13*t^7.6*y)/g2^3 + (2*g1^7*t^7.64*y)/g2 + 2*g1*g2*t^7.69*y + (g2^3*t^7.73*y)/g1^5 + (2*t^7.83*y)/g2^8 + (2*t^7.88*y)/(g1^6*g2^6) + (2*t^7.93*y)/(g1^12*g2^4) + 2*g1^9*g2*t^8.01*y + 2*g1^3*g2^3*t^8.06*y + (g1^2*t^8.21*y)/g2^6 + (5*t^8.25*y)/(g1^4*g2^4) + (2*t^8.3*y)/(g1^10*g2^2) - g1^17*g2*t^8.34*y + (2*t^8.63*y)/(g1^2*g2^2) + (2*t^8.67*y)/g1^8 - (3*t^8.82*y)/(g1^9*g2^9) - (g1^12*t^8.91*y)/g2^4 - (g1^6*t^8.95*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
916 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1^2$ + $ M_6q_1\tilde{q}_2$ | 0.7478 | 0.9314 | 0.8029 | [X:[], M:[1.0, 0.7502, 0.889, 0.8612, 1.0, 0.7502], q:[0.5555, 0.4445], qb:[0.5555, 0.6943], phi:[0.4375]] | 2*t^2.25 + t^2.58 + t^2.63 + t^2.67 + 2*t^3. + t^3.98 + 2*t^4.31 + 3*t^4.5 + 3*t^4.65 + t^4.73 + 2*t^4.83 + 2*t^4.88 + 2*t^4.92 + 2*t^5.06 + t^5.17 + t^5.21 + 5*t^5.25 + t^5.29 + t^5.33 + t^5.48 + 2*t^5.63 - 3*t^6. - t^4.31/y - t^4.31*y | detail |