Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1404 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7686 0.9726 0.7902 [M:[1.0, 0.7511, 0.8907, 0.8603, 1.0, 0.7511, 0.6715], q:[0.5546, 0.4454], qb:[0.5546, 0.6943], phi:[0.4378]] [M:[[0, 0], [-4, -4], [-8, 0], [4, -4], [0, 0], [-4, -4], [9, 1]], q:[[4, 0], [-4, 0]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ ${}M_{1}M_{5}$ -3 t^2.015 + 2*t^2.253 + t^2.581 + t^2.627 + t^2.672 + 2*t^3. + t^4.029 + 2*t^4.268 + 2*t^4.313 + 3*t^4.506 + t^4.595 + 4*t^4.641 + t^4.687 + t^4.732 + 2*t^4.834 + 2*t^4.88 + 2*t^4.925 + 2*t^5.015 + 2*t^5.06 + t^5.162 + t^5.208 + 5*t^5.253 + t^5.299 + t^5.344 + t^5.479 + 2*t^5.627 - 3*t^6. + t^6.044 + 2*t^6.282 - 2*t^6.419 + 3*t^6.521 + 3*t^6.566 + t^6.61 + 4*t^6.656 + t^6.701 - t^6.747 + 4*t^6.76 + 2*t^6.849 + 8*t^6.894 + 4*t^6.94 + 2*t^6.985 + 2*t^7.029 + 2*t^7.075 + 3*t^7.087 + 3*t^7.133 + t^7.176 + 3*t^7.179 + 4*t^7.222 + 8*t^7.268 + 7*t^7.313 + t^7.359 + t^7.405 + 2*t^7.415 + 2*t^7.461 + t^7.494 + 8*t^7.506 + 2*t^7.552 + 2*t^7.598 + 6*t^7.641 + 2*t^7.732 + t^7.743 + t^7.789 + 2*t^7.834 + 5*t^7.88 + t^7.925 + t^7.971 - 6*t^8.015 + t^8.017 + t^8.058 - t^8.06 + t^8.151 - 6*t^8.253 + 2*t^8.297 - 2*t^8.388 - 4*t^8.434 + 3*t^8.535 - 6*t^8.581 + t^8.625 - 3*t^8.627 + 4*t^8.67 - 8*t^8.672 + t^8.716 - t^8.761 + 4*t^8.774 - t^8.807 + 4*t^8.82 - t^8.853 + 2*t^8.863 + 6*t^8.909 + 6*t^8.954 - t^4.313/y - t^6.328/y - (2*t^6.566)/y - t^6.894/y - t^6.94/y - t^6.985/y + (2*t^7.268)/y + t^7.506/y + t^7.595/y + (2*t^7.641)/y + (2*t^7.687)/y + t^7.732/y + (2*t^7.834)/y + (2*t^7.88)/y + (2*t^7.925)/y + (2*t^8.015)/y + (2*t^8.06)/y + t^8.208/y + (5*t^8.253)/y + (2*t^8.299)/y - t^8.342/y + (2*t^8.627)/y + (2*t^8.672)/y - (3*t^8.82)/y - t^8.909/y - t^8.954/y - t^4.313*y - t^6.328*y - 2*t^6.566*y - t^6.894*y - t^6.94*y - t^6.985*y + 2*t^7.268*y + t^7.506*y + t^7.595*y + 2*t^7.641*y + 2*t^7.687*y + t^7.732*y + 2*t^7.834*y + 2*t^7.88*y + 2*t^7.925*y + 2*t^8.015*y + 2*t^8.06*y + t^8.208*y + 5*t^8.253*y + 2*t^8.299*y - t^8.342*y + 2*t^8.627*y + 2*t^8.672*y - 3*t^8.82*y - t^8.909*y - t^8.954*y g1^9*g2*t^2.015 + (2*t^2.253)/(g1^4*g2^4) + (g1^4*t^2.581)/g2^4 + t^2.627/(g1^2*g2^2) + t^2.672/g1^8 + 2*t^3. + g1^18*g2^2*t^4.029 + (2*g1^5*t^4.268)/g2^3 + (2*t^4.313)/(g1*g2) + (3*t^4.506)/(g1^8*g2^8) + (g1^13*t^4.595)/g2^3 + (4*g1^7*t^4.641)/g2 + g1*g2*t^4.687 + (g2^3*t^4.732)/g1^5 + (2*t^4.834)/g2^8 + (2*t^4.88)/(g1^6*g2^6) + (2*t^4.925)/(g1^12*g2^4) + 2*g1^9*g2*t^5.015 + 2*g1^3*g2^3*t^5.06 + (g1^8*t^5.162)/g2^8 + (g1^2*t^5.208)/g2^6 + (5*t^5.253)/(g1^4*g2^4) + t^5.299/(g1^10*g2^2) + t^5.344/g1^16 + (g2^7*t^5.479)/g1 + (2*t^5.627)/(g1^2*g2^2) - 3*t^6. + g1^27*g2^3*t^6.044 + (2*g1^14*t^6.282)/g2^2 - (2*g2^4*t^6.419)/g1^4 + (3*g1*t^6.521)/g2^7 + (3*t^6.566)/(g1^5*g2^5) + (g1^22*t^6.61)/g2^2 + 4*g1^16*t^6.656 + g1^10*g2^2*t^6.701 - g1^4*g2^4*t^6.747 + (4*t^6.76)/(g1^12*g2^12) + (2*g1^9*t^6.849)/g2^7 + (8*g1^3*t^6.894)/g2^5 + (4*t^6.94)/(g1^3*g2^3) + (2*t^6.985)/(g1^9*g2) + 2*g1^18*g2^2*t^7.029 + 2*g1^12*g2^4*t^7.075 + (3*t^7.087)/(g1^4*g2^12) + (3*t^7.133)/(g1^10*g2^10) + (g1^17*t^7.176)/g2^7 + (3*t^7.179)/(g1^16*g2^8) + (4*g1^11*t^7.222)/g2^5 + (8*g1^5*t^7.268)/g2^3 + (7*t^7.313)/(g1*g2) + (g2*t^7.359)/g1^7 + (g2^3*t^7.405)/g1^13 + (2*g1^4*t^7.415)/g2^12 + (2*t^7.461)/(g1^2*g2^10) + g1^8*g2^8*t^7.494 + (8*t^7.506)/(g1^8*g2^8) + (2*t^7.552)/(g1^14*g2^6) + (2*t^7.598)/(g1^20*g2^4) + (6*g1^7*t^7.641)/g2 + (2*g2^3*t^7.732)/g1^5 + (g1^12*t^7.743)/g2^12 + (g1^6*t^7.789)/g2^10 + (2*t^7.834)/g2^8 + (5*t^7.88)/(g1^6*g2^6) + t^7.925/(g1^12*g2^4) + t^7.971/(g1^18*g2^2) - 6*g1^9*g2*t^8.015 + t^8.017/g1^24 + g1^36*g2^4*t^8.058 - g1^3*g2^3*t^8.06 + (g2^7*t^8.151)/g1^9 - (6*t^8.253)/(g1^4*g2^4) + (2*g1^23*t^8.297)/g2 - 2*g1^11*g2^3*t^8.388 - 4*g1^5*g2^5*t^8.434 + (3*g1^10*t^8.535)/g2^6 - (6*g1^4*t^8.581)/g2^4 + (g1^31*t^8.625)/g2 - (3*t^8.627)/(g1^2*g2^2) + 4*g1^25*g2*t^8.67 - (8*t^8.672)/g1^8 + g1^19*g2^3*t^8.716 - g1^13*g2^5*t^8.761 + (4*t^8.774)/(g1^3*g2^11) - g1^7*g2^7*t^8.807 + (4*t^8.82)/(g1^9*g2^9) - g1*g2^9*t^8.853 + (2*g1^18*t^8.863)/g2^6 + (6*g1^12*t^8.909)/g2^4 + (6*g1^6*t^8.954)/g2^2 - t^4.313/(g1*g2*y) - (g1^8*t^6.328)/y - (2*t^6.566)/(g1^5*g2^5*y) - (g1^3*t^6.894)/(g2^5*y) - t^6.94/(g1^3*g2^3*y) - t^6.985/(g1^9*g2*y) + (2*g1^5*t^7.268)/(g2^3*y) + t^7.506/(g1^8*g2^8*y) + (g1^13*t^7.595)/(g2^3*y) + (2*g1^7*t^7.641)/(g2*y) + (2*g1*g2*t^7.687)/y + (g2^3*t^7.732)/(g1^5*y) + (2*t^7.834)/(g2^8*y) + (2*t^7.88)/(g1^6*g2^6*y) + (2*t^7.925)/(g1^12*g2^4*y) + (2*g1^9*g2*t^8.015)/y + (2*g1^3*g2^3*t^8.06)/y + (g1^2*t^8.208)/(g2^6*y) + (5*t^8.253)/(g1^4*g2^4*y) + (2*t^8.299)/(g1^10*g2^2*y) - (g1^17*g2*t^8.342)/y + (2*t^8.627)/(g1^2*g2^2*y) + (2*t^8.672)/(g1^8*y) - (3*t^8.82)/(g1^9*g2^9*y) - (g1^12*t^8.909)/(g2^4*y) - (g1^6*t^8.954)/(g2^2*y) - (t^4.313*y)/(g1*g2) - g1^8*t^6.328*y - (2*t^6.566*y)/(g1^5*g2^5) - (g1^3*t^6.894*y)/g2^5 - (t^6.94*y)/(g1^3*g2^3) - (t^6.985*y)/(g1^9*g2) + (2*g1^5*t^7.268*y)/g2^3 + (t^7.506*y)/(g1^8*g2^8) + (g1^13*t^7.595*y)/g2^3 + (2*g1^7*t^7.641*y)/g2 + 2*g1*g2*t^7.687*y + (g2^3*t^7.732*y)/g1^5 + (2*t^7.834*y)/g2^8 + (2*t^7.88*y)/(g1^6*g2^6) + (2*t^7.925*y)/(g1^12*g2^4) + 2*g1^9*g2*t^8.015*y + 2*g1^3*g2^3*t^8.06*y + (g1^2*t^8.208*y)/g2^6 + (5*t^8.253*y)/(g1^4*g2^4) + (2*t^8.299*y)/(g1^10*g2^2) - g1^17*g2*t^8.342*y + (2*t^8.627*y)/(g1^2*g2^2) + (2*t^8.672*y)/g1^8 - (3*t^8.82*y)/(g1^9*g2^9) - (g1^12*t^8.909*y)/g2^4 - (g1^6*t^8.954*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
916 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7478 0.9314 0.8029 [M:[1.0, 0.7502, 0.889, 0.8612, 1.0, 0.7502], q:[0.5555, 0.4445], qb:[0.5555, 0.6943], phi:[0.4375]] 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y detail