Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55046 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ 0.6852 0.8517 0.8045 [X:[1.3319], M:[0.7815, 0.6681, 1.0, 1.1135, 1.0, 0.7815, 0.8865], q:[0.666, 0.5525], qb:[0.666, 0.334], phi:[0.4454]] [X:[[0, 6]], M:[[1, -19], [0, -6], [-1, 3], [0, -10], [1, -3], [-1, -13], [0, 10]], q:[[-1, 6], [0, 13]], qb:[[1, 0], [0, -3]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_5$, $ M_3$, $ M_4$, $ \phi_1q_2\tilde{q}_2$, $ X_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1^2$, $ M_1M_6$, $ M_6^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_7^2$, $ \phi_1\tilde{q}_1^2$, $ M_7\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_1M_5$, $ M_1M_3$, $ M_5M_6$, $ \phi_1^4$, $ M_3M_6$, $ M_5\phi_1^2$, $ M_3\phi_1^2$, $ M_1M_4$, $ M_4M_6$ $M_3^2$, $ M_5^2$ -2 2*t^2.34 + t^2.66 + t^2.67 + 2*t^3. + t^3.34 + 2*t^4. + 2*t^4.34 + t^4.65 + 3*t^4.69 + 2*t^4.99 + 2*t^5.02 + t^5.32 + 4*t^5.33 + 4*t^5.34 + 2*t^5.67 + 2*t^5.69 - 2*t^6. + t^6.01 + 2*t^6.34 + t^6.67 + 4*t^6.68 + 2*t^7. + 2*t^7.01 + 4*t^7.03 + t^7.31 + 4*t^7.34 - t^7.35 + 3*t^7.36 + 2*t^7.65 + 6*t^7.68 + 6*t^7.69 + 5*t^7.99 + 2*t^8. + 4*t^8.02 + 3*t^8.03 - 2*t^8.32 + 6*t^8.33 - 4*t^8.34 + 2*t^8.36 + t^8.65 - 6*t^8.66 + t^8.67 + 3*t^8.69 + 2*t^8.99 - t^4.34/y - (2*t^6.68)/y - t^7.01/y + t^7.66/y + t^7.69/y + (2*t^7.99)/y + (2*t^8.)/y + (2*t^8.02)/y + t^8.33/y + (4*t^8.34)/y + (2*t^8.66)/y + (2*t^8.67)/y + (2*t^8.69)/y - t^4.34*y - 2*t^6.68*y - t^7.01*y + t^7.66*y + t^7.69*y + 2*t^7.99*y + 2*t^8.*y + 2*t^8.02*y + t^8.33*y + 4*t^8.34*y + 2*t^8.66*y + 2*t^8.67*y + 2*t^8.69*y (g1*t^2.34)/g2^19 + t^2.34/(g1*g2^13) + g2^10*t^2.66 + t^2.67/g2^8 + (g1*t^3.)/g2^3 + (g2^3*t^3.)/g1 + t^3.34/g2^10 + 2*g2^6*t^4. + (g1*t^4.34)/g2^7 + t^4.34/(g1*g2) + g2^22*t^4.65 + (g1^2*t^4.69)/g2^38 + t^4.69/g2^32 + t^4.69/(g1^2*g2^26) + g1*g2^9*t^4.99 + (g2^15*t^4.99)/g1 + (g1*t^5.02)/g2^27 + t^5.02/(g1*g2^21) + g2^20*t^5.32 + (g1^2*t^5.33)/g2^4 + 2*g2^2*t^5.33 + (g2^8*t^5.33)/g1^2 + (g1^2*t^5.34)/g2^22 + (2*t^5.34)/g2^16 + t^5.34/(g1^2*g2^10) + (g1*t^5.67)/g2^11 + t^5.67/(g1*g2^5) + (g1*t^5.69)/g2^29 + t^5.69/(g1*g2^23) - 2*t^6. + t^6.01/g2^18 + (g1*t^6.34)/g2^13 + t^6.34/(g1*g2^7) + t^6.67/g2^2 + (g1^2*t^6.68)/g2^26 + (2*t^6.68)/g2^20 + t^6.68/(g1^2*g2^14) + g1*g2^3*t^7. + (g2^9*t^7.)/g1 + (g1*t^7.01)/g2^15 + t^7.01/(g1*g2^9) + (g1^3*t^7.03)/g2^57 + (g1*t^7.03)/g2^51 + t^7.03/(g1*g2^45) + t^7.03/(g1^3*g2^39) + g2^32*t^7.31 + (g1^2*t^7.34)/g2^10 + (2*t^7.34)/g2^4 + (g2^2*t^7.34)/g1^2 - t^7.35/g2^22 + (g1^2*t^7.36)/g2^46 + t^7.36/g2^40 + t^7.36/(g1^2*g2^34) + g1*g2^19*t^7.65 + (g2^25*t^7.65)/g1 + (g1^3*t^7.68)/g2^23 + (2*g1*t^7.68)/g2^17 + (2*t^7.68)/(g1*g2^11) + t^7.68/(g1^3*g2^5) + (g1^3*t^7.69)/g2^41 + (2*g1*t^7.69)/g2^35 + (2*t^7.69)/(g1*g2^29) + t^7.69/(g1^3*g2^23) + g1^2*g2^6*t^7.99 + 3*g2^12*t^7.99 + (g2^18*t^7.99)/g1^2 + t^8./g1^2 + (g1^2*t^8.)/g2^12 + (g1^2*t^8.02)/g2^30 + (2*t^8.02)/g2^24 + t^8.02/(g1^2*g2^18) + (g1^2*t^8.03)/g2^48 + t^8.03/g2^42 + t^8.03/(g1^2*g2^36) - g1*g2^17*t^8.32 - (g2^23*t^8.32)/g1 + (g1^3*t^8.33)/g2^7 + (2*g1*t^8.33)/g2 + (2*g2^5*t^8.33)/g1 + (g2^11*t^8.33)/g1^3 - (2*g1*t^8.34)/g2^19 - (2*t^8.34)/(g1*g2^13) + (g1*t^8.36)/g2^37 + t^8.36/(g1*g2^31) + g2^28*t^8.65 - g1^2*g2^4*t^8.66 - 4*g2^10*t^8.66 - (g2^16*t^8.66)/g1^2 + (g1^2*t^8.67)/g2^14 - t^8.67/g2^8 + t^8.67/(g1^2*g2^2) + (g1^2*t^8.69)/g2^32 + t^8.69/g2^26 + t^8.69/(g1^2*g2^20) + g1*g2^15*t^8.99 + (g2^21*t^8.99)/g1 - t^4.34/(g2^4*y) - (g1*t^6.68)/(g2^23*y) - t^6.68/(g1*g2^17*y) - t^7.01/(g2^12*y) + (g2^4*t^7.66)/y + t^7.69/(g2^32*y) + (g1*g2^9*t^7.99)/y + (g2^15*t^7.99)/(g1*y) + (g1*t^8.)/(g2^9*y) + t^8./(g1*g2^3*y) + (g1*t^8.02)/(g2^27*y) + t^8.02/(g1*g2^21*y) + (g2^2*t^8.33)/y + (g1^2*t^8.34)/(g2^22*y) + (2*t^8.34)/(g2^16*y) + t^8.34/(g1^2*g2^10*y) + (g1*g2^7*t^8.66)/y + (g2^13*t^8.66)/(g1*y) + (g1*t^8.67)/(g2^11*y) + t^8.67/(g1*g2^5*y) + (g1*t^8.69)/(g2^29*y) + t^8.69/(g1*g2^23*y) - (t^4.34*y)/g2^4 - (g1*t^6.68*y)/g2^23 - (t^6.68*y)/(g1*g2^17) - (t^7.01*y)/g2^12 + g2^4*t^7.66*y + (t^7.69*y)/g2^32 + g1*g2^9*t^7.99*y + (g2^15*t^7.99*y)/g1 + (g1*t^8.*y)/g2^9 + (t^8.*y)/(g1*g2^3) + (g1*t^8.02*y)/g2^27 + (t^8.02*y)/(g1*g2^21) + g2^2*t^8.33*y + (g1^2*t^8.34*y)/g2^22 + (2*t^8.34*y)/g2^16 + (t^8.34*y)/(g1^2*g2^10) + g1*g2^7*t^8.66*y + (g2^13*t^8.66*y)/g1 + (g1*t^8.67*y)/g2^11 + (t^8.67*y)/(g1*g2^5) + (g1*t^8.69*y)/g2^29 + (t^8.69*y)/(g1*g2^23)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56718 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_1M_4$ 0.6818 0.8459 0.806 [X:[1.3128], M:[0.8546, 0.6872, 0.978, 1.1454, 1.022, 0.8107, 0.8546], q:[0.6344, 0.511], qb:[0.6784, 0.3436], phi:[0.4582]] t^2.43 + 2*t^2.56 + t^2.75 + t^2.93 + t^3.07 + t^3.44 + 2*t^3.94 + t^4.31 + 2*t^4.44 + t^4.81 + t^4.86 + t^4.94 + t^5. + 2*t^5.13 + 2*t^5.18 + 3*t^5.31 + t^5.37 + t^5.44 + 2*t^5.5 + t^5.63 + t^5.68 + t^5.81 + t^5.87 - t^6. - t^4.37/y - t^4.37*y detail
56717 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_1M_5$ 0.6725 0.8362 0.8042 [X:[1.3096], M:[0.9206, 0.6904, 0.9206, 1.1507, 1.0794, 0.7618, 0.8493], q:[0.5754, 0.504], qb:[0.7342, 0.3452], phi:[0.4603]] t^2.29 + t^2.55 + 3*t^2.76 + t^3.24 + t^3.45 + 2*t^3.93 + t^4.14 + t^4.41 + t^4.57 + 2*t^4.62 + t^4.83 + 3*t^5.05 + 2*t^5.1 + 2*t^5.31 + 5*t^5.52 + t^5.74 + t^5.79 - t^4.38/y - t^4.38*y detail
56714 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_1M_6$ 0.6387 0.7949 0.8034 [X:[1.25], M:[1.0, 0.75, 1.0, 1.25, 1.0, 1.0, 0.75], q:[0.625, 0.375], qb:[0.625, 0.375], phi:[0.5]] t^2.25 + 5*t^3. + 4*t^3.75 + 5*t^4.5 + 4*t^5.25 + 10*t^6. - t^4.5/y - t^4.5*y detail {a: 327/512, c: 407/512, X1: 5/4, M1: 1, M2: 3/4, M3: 1, M4: 5/4, M5: 1, M6: 1, M7: 3/4, q1: 5/8, q2: 3/8, qb1: 5/8, qb2: 3/8, phi1: 1/2}
56715 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_1\phi_1^2$ 0.6498 0.8085 0.8037 [X:[1.2698], M:[1.0264, 0.7302, 0.9208, 1.217, 1.0792, 0.8681, 0.783], q:[0.5557, 0.4179], qb:[0.7141, 0.3651], phi:[0.4868]] t^2.35 + t^2.6 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + t^3.65 + 2*t^3.81 + t^3.97 + t^4.22 + t^4.38 + 2*t^4.7 + t^4.79 + t^4.86 + t^5.21 + 2*t^5.27 + t^5.37 + t^5.53 + 2*t^5.68 + t^5.74 + 2*t^5.84 - t^6. - t^4.46/y - t^4.46*y detail
56713 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_1^2$ 0.6577 0.8181 0.8039 [X:[1.2837], M:[1.0, 0.7163, 0.9102, 1.1939, 1.0898, 0.8205, 0.8061], q:[0.5521, 0.4479], qb:[0.7316, 0.3582], phi:[0.4776]] t^2.42 + t^2.46 + t^2.73 + t^2.87 + t^3. + t^3.27 + t^3.58 + 2*t^3.85 + t^4.12 + t^4.16 + t^4.43 + t^4.7 + t^4.75 + t^4.84 + t^4.92 + t^4.97 + t^5.19 + 2*t^5.28 + t^5.33 + t^5.46 + t^5.6 + 2*t^5.73 + t^5.82 + t^5.87 - t^6. - t^4.43/y - t^4.43*y detail
56721 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_4M_8$ 0.6961 0.8694 0.8006 [X:[1.3228], M:[0.8059, 0.6772, 1.0, 1.1287, 1.0, 0.8059, 0.8713, 0.8713], q:[0.6614, 0.5327], qb:[0.6614, 0.3386], phi:[0.4515]] 2*t^2.42 + 2*t^2.61 + t^2.71 + 2*t^3. + 2*t^3.97 + 2*t^4.35 + t^4.55 + 3*t^4.84 + 2*t^4.94 + 2*t^5.03 + 2*t^5.13 + 3*t^5.23 + 5*t^5.32 + 4*t^5.42 + 2*t^5.61 + 2*t^5.71 - 3*t^6. - t^4.35/y - t^4.35*y detail
56719 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ M_8\phi_1^2$ 0.6758 0.8351 0.8092 [X:[1.3241], M:[0.8024, 0.6759, 1.0, 1.1265, 1.0, 0.8024, 0.8735, 1.0988], q:[0.6621, 0.5356], qb:[0.6621, 0.3379], phi:[0.4506]] 2*t^2.41 + t^2.62 + 2*t^3. + t^3.3 + t^3.38 + 2*t^3.97 + 2*t^4.35 + t^4.57 + 3*t^4.81 + 2*t^4.94 + t^5.24 + 3*t^5.32 + 3*t^5.41 + 2*t^5.7 + 2*t^5.79 + t^5.92 - 2*t^6. - t^4.35/y - t^4.35*y detail
56712 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_4M_7$ + $ M_2X_1$ + $ \phi_1q_2^2$ + $ M_1X_2$ + $ M_6X_3$ 0.5542 0.6678 0.8298 [X:[1.4545, 1.5455, 1.5455], M:[0.4545, 0.5455, 1.0, 0.9091, 1.0, 0.4545, 1.0909], q:[0.7273, 0.8182], qb:[0.7273, 0.2727], phi:[0.3636]] t^2.18 + t^2.73 + 2*t^3. + t^3.27 + 2*t^4.09 + 2*t^4.36 + t^4.91 + 2*t^5.18 + 4*t^5.45 - t^6. - t^4.09/y - t^4.09*y detail {a: 5901/10648, c: 7111/10648, X1: 16/11, X2: 17/11, X3: 17/11, M1: 5/11, M2: 6/11, M3: 1, M4: 10/11, M5: 1, M6: 5/11, M7: 12/11, q1: 8/11, q2: 9/11, qb1: 8/11, qb2: 3/11, phi1: 4/11}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46865 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ 0.7686 0.9726 0.7902 [X:[], M:[0.7511, 0.8907, 1.0, 0.8603, 1.0, 0.7511, 0.6715], q:[0.5546, 0.6943], qb:[0.5546, 0.4454], phi:[0.4378]] t^2.01 + 2*t^2.25 + t^2.58 + t^2.63 + t^2.67 + 2*t^3. + t^4.03 + 2*t^4.27 + 2*t^4.31 + 3*t^4.51 + t^4.6 + 4*t^4.64 + t^4.69 + t^4.73 + 2*t^4.83 + 2*t^4.88 + 2*t^4.93 + 2*t^5.01 + 2*t^5.06 + t^5.16 + t^5.21 + 5*t^5.25 + t^5.3 + t^5.34 + t^5.48 + 2*t^5.63 - 3*t^6. - t^4.31/y - t^4.31*y detail