Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
976 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.7686 | 0.9726 | 0.7902 | [M:[0.8603, 0.8907, 0.7511, 1.0, 1.0, 0.7511, 0.6715], q:[0.6943, 0.4454], qb:[0.5546, 0.5546], phi:[0.4378]] | [M:[[-4, 4, 4], [0, -8, -8], [-4, -8, 0], [0, 4, -4], [0, -4, 4], [-4, 0, -8], [1, 9, 9]], q:[[4, 0, 0], [0, -4, -4]], qb:[[0, 8, 0], [0, 0, 8]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ | ${}M_{4}^{2}$, ${ }M_{5}^{2}$ | -3 | t^2.015 + 2*t^2.253 + t^2.581 + t^2.627 + t^2.672 + 2*t^3. + t^4.029 + 2*t^4.268 + 2*t^4.313 + 3*t^4.506 + t^4.595 + 4*t^4.641 + t^4.687 + t^4.732 + 2*t^4.834 + 2*t^4.88 + 2*t^4.925 + 2*t^5.015 + 2*t^5.06 + t^5.162 + t^5.208 + 5*t^5.253 + t^5.299 + t^5.344 + t^5.479 + 2*t^5.627 - 3*t^6. + t^6.044 + 2*t^6.282 - 2*t^6.419 + 3*t^6.521 + 3*t^6.566 + t^6.61 + 4*t^6.656 + t^6.701 - t^6.747 + 4*t^6.76 + 2*t^6.849 + 8*t^6.894 + 4*t^6.94 + 2*t^6.985 + 2*t^7.029 + 2*t^7.075 + 3*t^7.087 + 3*t^7.133 + t^7.176 + 3*t^7.179 + 4*t^7.222 + 8*t^7.268 + 7*t^7.313 + t^7.359 + t^7.405 + 2*t^7.415 + 2*t^7.461 + t^7.494 + 8*t^7.506 + 2*t^7.552 + 2*t^7.598 + 6*t^7.641 + 2*t^7.732 + t^7.743 + t^7.789 + 2*t^7.834 + 5*t^7.88 + t^7.925 + t^7.971 - 6*t^8.015 + t^8.017 + t^8.058 - t^8.06 + t^8.151 - 6*t^8.253 + 2*t^8.297 - 2*t^8.388 - 4*t^8.434 + 3*t^8.535 - 6*t^8.581 + t^8.625 - 3*t^8.627 + 4*t^8.67 - 8*t^8.672 + t^8.716 - t^8.761 + 4*t^8.774 - t^8.807 + 4*t^8.82 - t^8.853 + 2*t^8.863 + 6*t^8.909 + 6*t^8.954 - t^4.313/y - t^6.328/y - (2*t^6.566)/y - t^6.894/y - t^6.94/y - t^6.985/y + (2*t^7.268)/y + t^7.506/y + t^7.595/y + (2*t^7.641)/y + (2*t^7.687)/y + t^7.732/y + (2*t^7.834)/y + (2*t^7.88)/y + (2*t^7.925)/y + (2*t^8.015)/y + (2*t^8.06)/y + t^8.208/y + (5*t^8.253)/y + (2*t^8.299)/y - t^8.342/y + (2*t^8.627)/y + (2*t^8.672)/y - (3*t^8.82)/y - t^8.909/y - t^8.954/y - t^4.313*y - t^6.328*y - 2*t^6.566*y - t^6.894*y - t^6.94*y - t^6.985*y + 2*t^7.268*y + t^7.506*y + t^7.595*y + 2*t^7.641*y + 2*t^7.687*y + t^7.732*y + 2*t^7.834*y + 2*t^7.88*y + 2*t^7.925*y + 2*t^8.015*y + 2*t^8.06*y + t^8.208*y + 5*t^8.253*y + 2*t^8.299*y - t^8.342*y + 2*t^8.627*y + 2*t^8.672*y - 3*t^8.82*y - t^8.909*y - t^8.954*y | g1*g2^9*g3^9*t^2.015 + t^2.253/(g1^4*g2^8) + t^2.253/(g1^4*g3^8) + (g2^4*g3^4*t^2.581)/g1^4 + t^2.627/(g1^2*g2^2*g3^2) + t^2.672/(g2^8*g3^8) + (g2^4*t^3.)/g3^4 + (g3^4*t^3.)/g2^4 + g1^2*g2^18*g3^18*t^4.029 + (g2^9*g3*t^4.268)/g1^3 + (g2*g3^9*t^4.268)/g1^3 + (g2^3*t^4.313)/(g1*g3^5) + (g3^3*t^4.313)/(g1*g2^5) + t^4.506/(g1^8*g2^16) + t^4.506/(g1^8*g3^16) + t^4.506/(g1^8*g2^8*g3^8) + (g2^13*g3^13*t^4.595)/g1^3 + (g2^15*t^4.641)/(g1*g3) + (2*g2^7*g3^7*t^4.641)/g1 + (g3^15*t^4.641)/(g1*g2) + g1*g2*g3*t^4.687 + (g1^3*t^4.732)/(g2^5*g3^5) + (g2^4*t^4.834)/(g1^8*g3^4) + (g3^4*t^4.834)/(g1^8*g2^4) + t^4.88/(g1^6*g2^2*g3^10) + t^4.88/(g1^6*g2^10*g3^2) + t^4.925/(g1^4*g2^8*g3^16) + t^4.925/(g1^4*g2^16*g3^8) + g1*g2^13*g3^5*t^5.015 + g1*g2^5*g3^13*t^5.015 + (g1^3*g2^7*t^5.06)/g3 + (g1^3*g3^7*t^5.06)/g2 + (g2^8*g3^8*t^5.162)/g1^8 + (g2^2*g3^2*t^5.208)/g1^6 + (g2^4*t^5.253)/(g1^4*g3^12) + (3*t^5.253)/(g1^4*g2^4*g3^4) + (g3^4*t^5.253)/(g1^4*g2^12) + t^5.299/(g1^2*g2^10*g3^10) + t^5.344/(g2^16*g3^16) + (g1^7*t^5.479)/(g2*g3) + (g2^2*t^5.627)/(g1^2*g3^6) + (g3^2*t^5.627)/(g1^2*g2^6) - 3*t^6. + g1^3*g2^27*g3^27*t^6.044 + (g2^18*g3^10*t^6.282)/g1^2 + (g2^10*g3^18*t^6.282)/g1^2 - (g1^4*t^6.419)/g2^8 - (g1^4*t^6.419)/g3^8 + (g2^9*t^6.521)/(g1^7*g3^7) + (g2*g3*t^6.521)/g1^7 + (g3^9*t^6.521)/(g1^7*g2^7) + (g2^3*t^6.566)/(g1^5*g3^13) + t^6.566/(g1^5*g2^5*g3^5) + (g3^3*t^6.566)/(g1^5*g2^13) + (g2^22*g3^22*t^6.61)/g1^2 + g2^24*g3^8*t^6.656 + 2*g2^16*g3^16*t^6.656 + g2^8*g3^24*t^6.656 + g1^2*g2^10*g3^10*t^6.701 - g1^4*g2^4*g3^4*t^6.747 + t^6.76/(g1^12*g2^24) + t^6.76/(g1^12*g3^24) + t^6.76/(g1^12*g2^8*g3^16) + t^6.76/(g1^12*g2^16*g3^8) + (g2^13*g3^5*t^6.849)/g1^7 + (g2^5*g3^13*t^6.849)/g1^7 + (g2^15*t^6.894)/(g1^5*g3^9) + (3*g2^7*t^6.894)/(g1^5*g3) + (3*g3^7*t^6.894)/(g1^5*g2) + (g3^15*t^6.894)/(g1^5*g2^9) + (2*g2*t^6.94)/(g1^3*g3^7) + (2*g3*t^6.94)/(g1^3*g2^7) + t^6.985/(g1*g2^5*g3^13) + t^6.985/(g1*g2^13*g3^5) + g1^2*g2^22*g3^14*t^7.029 + g1^2*g2^14*g3^22*t^7.029 + g1^4*g2^16*g3^8*t^7.075 + g1^4*g2^8*g3^16*t^7.075 + (g2^4*t^7.087)/(g1^12*g3^12) + t^7.087/(g1^12*g2^4*g3^4) + (g3^4*t^7.087)/(g1^12*g2^12) + t^7.133/(g1^10*g2^2*g3^18) + t^7.133/(g1^10*g2^10*g3^10) + t^7.133/(g1^10*g2^18*g3^2) + (g2^17*g3^17*t^7.176)/g1^7 + t^7.179/(g1^8*g2^8*g3^24) + t^7.179/(g1^8*g2^16*g3^16) + t^7.179/(g1^8*g2^24*g3^8) + (g2^19*g3^3*t^7.222)/g1^5 + (2*g2^11*g3^11*t^7.222)/g1^5 + (g2^3*g3^19*t^7.222)/g1^5 + (2*g2^13*t^7.268)/(g1^3*g3^3) + (4*g2^5*g3^5*t^7.268)/g1^3 + (2*g3^13*t^7.268)/(g1^3*g2^3) + (2*g2^7*t^7.313)/(g1*g3^9) + (3*t^7.313)/(g1*g2*g3) + (2*g3^7*t^7.313)/(g1*g2^9) + (g1*t^7.359)/(g2^7*g3^7) + (g1^3*t^7.405)/(g2^13*g3^13) + (g2^8*t^7.415)/g1^12 + (g3^8*t^7.415)/g1^12 + (g2^2*t^7.461)/(g1^10*g3^6) + (g3^2*t^7.461)/(g1^10*g2^6) + g1^8*g2^8*g3^8*t^7.494 + (g2^4*t^7.506)/(g1^8*g3^20) + (3*t^7.506)/(g1^8*g2^4*g3^12) + (3*t^7.506)/(g1^8*g2^12*g3^4) + (g3^4*t^7.506)/(g1^8*g2^20) + t^7.552/(g1^6*g2^10*g3^18) + t^7.552/(g1^6*g2^18*g3^10) + t^7.598/(g1^4*g2^16*g3^24) + t^7.598/(g1^4*g2^24*g3^16) + (g2^19*t^7.641)/(g1*g3^5) + (2*g2^11*g3^3*t^7.641)/g1 + (2*g2^3*g3^11*t^7.641)/g1 + (g3^19*t^7.641)/(g1*g2^5) + (g1^3*t^7.732)/(g2*g3^9) + (g1^3*t^7.732)/(g2^9*g3) + (g2^12*g3^12*t^7.743)/g1^12 + (g2^6*g3^6*t^7.789)/g1^10 + (2*t^7.834)/g1^8 + (g2^2*t^7.88)/(g1^6*g3^14) + (3*t^7.88)/(g1^6*g2^6*g3^6) + (g3^2*t^7.88)/(g1^6*g2^14) + t^7.925/(g1^4*g2^12*g3^12) + t^7.971/(g1^2*g2^18*g3^18) - g1*g2^17*g3*t^8.015 - 4*g1*g2^9*g3^9*t^8.015 - g1*g2*g3^17*t^8.015 + t^8.017/(g2^24*g3^24) + g1^4*g2^36*g3^36*t^8.058 - g1^3*g2^3*g3^3*t^8.06 + (g1^7*t^8.151)/(g2^9*g3^9) - (3*t^8.253)/(g1^4*g2^8) - (3*t^8.253)/(g1^4*g3^8) + (g2^27*g3^19*t^8.297)/g1 + (g2^19*g3^27*t^8.297)/g1 - g1^3*g2^15*g3^7*t^8.388 - g1^3*g2^7*g3^15*t^8.388 - 2*g1^5*g2^9*g3*t^8.434 - 2*g1^5*g2*g3^9*t^8.434 + (g2^18*g3^2*t^8.535)/g1^6 + (g2^10*g3^10*t^8.535)/g1^6 + (g2^2*g3^18*t^8.535)/g1^6 - (g2^12*t^8.581)/(g1^4*g3^4) - (4*g2^4*g3^4*t^8.581)/g1^4 - (g3^12*t^8.581)/(g1^4*g2^4) + (g2^31*g3^31*t^8.625)/g1 - (3*t^8.627)/(g1^2*g2^2*g3^2) + g1*g2^33*g3^17*t^8.67 + 2*g1*g2^25*g3^25*t^8.67 + g1*g2^17*g3^33*t^8.67 - t^8.672/g2^16 - t^8.672/g3^16 - (6*t^8.672)/(g2^8*g3^8) + g1^3*g2^19*g3^19*t^8.716 - g1^5*g2^13*g3^13*t^8.761 + (g2^9*t^8.774)/(g1^11*g3^15) + (g2*t^8.774)/(g1^11*g3^7) + (g3*t^8.774)/(g1^11*g2^7) + (g3^9*t^8.774)/(g1^11*g2^15) - g1^7*g2^7*g3^7*t^8.807 + (g2^3*t^8.82)/(g1^9*g3^21) + t^8.82/(g1^9*g2^5*g3^13) + t^8.82/(g1^9*g2^13*g3^5) + (g3^3*t^8.82)/(g1^9*g2^21) - g1^9*g2*g3*t^8.853 + (g2^22*g3^14*t^8.863)/g1^6 + (g2^14*g3^22*t^8.863)/g1^6 + (g2^24*t^8.909)/g1^4 + (2*g2^16*g3^8*t^8.909)/g1^4 + (2*g2^8*g3^16*t^8.909)/g1^4 + (g3^24*t^8.909)/g1^4 + (g2^18*t^8.954)/(g1^2*g3^6) + (2*g2^10*g3^2*t^8.954)/g1^2 + (2*g2^2*g3^10*t^8.954)/g1^2 + (g3^18*t^8.954)/(g1^2*g2^6) - t^4.313/(g1*g2*g3*y) - (g2^8*g3^8*t^6.328)/y - t^6.566/(g1^5*g2*g3^9*y) - t^6.566/(g1^5*g2^9*g3*y) - (g2^3*g3^3*t^6.894)/(g1^5*y) - t^6.94/(g1^3*g2^3*g3^3*y) - t^6.985/(g1*g2^9*g3^9*y) + (g2^9*g3*t^7.268)/(g1^3*y) + (g2*g3^9*t^7.268)/(g1^3*y) + t^7.506/(g1^8*g2^8*g3^8*y) + (g2^13*g3^13*t^7.595)/(g1^3*y) + (2*g2^7*g3^7*t^7.641)/(g1*y) + (2*g1*g2*g3*t^7.687)/y + (g1^3*t^7.732)/(g2^5*g3^5*y) + (g2^4*t^7.834)/(g1^8*g3^4*y) + (g3^4*t^7.834)/(g1^8*g2^4*y) + t^7.88/(g1^6*g2^2*g3^10*y) + t^7.88/(g1^6*g2^10*g3^2*y) + t^7.925/(g1^4*g2^8*g3^16*y) + t^7.925/(g1^4*g2^16*g3^8*y) + (g1*g2^13*g3^5*t^8.015)/y + (g1*g2^5*g3^13*t^8.015)/y + (g1^3*g2^7*t^8.06)/(g3*y) + (g1^3*g3^7*t^8.06)/(g2*y) + (g2^2*g3^2*t^8.208)/(g1^6*y) + (g2^4*t^8.253)/(g1^4*g3^12*y) + (3*t^8.253)/(g1^4*g2^4*g3^4*y) + (g3^4*t^8.253)/(g1^4*g2^12*y) + (2*t^8.299)/(g1^2*g2^10*g3^10*y) - (g1*g2^17*g3^17*t^8.342)/y + (g2^2*t^8.627)/(g1^2*g3^6*y) + (g3^2*t^8.627)/(g1^2*g2^6*y) + t^8.672/(g2^4*g3^12*y) + t^8.672/(g2^12*g3^4*y) - t^8.82/(g1^9*g2*g3^17*y) - t^8.82/(g1^9*g2^9*g3^9*y) - t^8.82/(g1^9*g2^17*g3*y) - (g2^12*g3^12*t^8.909)/(g1^4*y) - (g2^6*g3^6*t^8.954)/(g1^2*y) - (t^4.313*y)/(g1*g2*g3) - g2^8*g3^8*t^6.328*y - (t^6.566*y)/(g1^5*g2*g3^9) - (t^6.566*y)/(g1^5*g2^9*g3) - (g2^3*g3^3*t^6.894*y)/g1^5 - (t^6.94*y)/(g1^3*g2^3*g3^3) - (t^6.985*y)/(g1*g2^9*g3^9) + (g2^9*g3*t^7.268*y)/g1^3 + (g2*g3^9*t^7.268*y)/g1^3 + (t^7.506*y)/(g1^8*g2^8*g3^8) + (g2^13*g3^13*t^7.595*y)/g1^3 + (2*g2^7*g3^7*t^7.641*y)/g1 + 2*g1*g2*g3*t^7.687*y + (g1^3*t^7.732*y)/(g2^5*g3^5) + (g2^4*t^7.834*y)/(g1^8*g3^4) + (g3^4*t^7.834*y)/(g1^8*g2^4) + (t^7.88*y)/(g1^6*g2^2*g3^10) + (t^7.88*y)/(g1^6*g2^10*g3^2) + (t^7.925*y)/(g1^4*g2^8*g3^16) + (t^7.925*y)/(g1^4*g2^16*g3^8) + g1*g2^13*g3^5*t^8.015*y + g1*g2^5*g3^13*t^8.015*y + (g1^3*g2^7*t^8.06*y)/g3 + (g1^3*g3^7*t^8.06*y)/g2 + (g2^2*g3^2*t^8.208*y)/g1^6 + (g2^4*t^8.253*y)/(g1^4*g3^12) + (3*t^8.253*y)/(g1^4*g2^4*g3^4) + (g3^4*t^8.253*y)/(g1^4*g2^12) + (2*t^8.299*y)/(g1^2*g2^10*g3^10) - g1*g2^17*g3^17*t^8.342*y + (g2^2*t^8.627*y)/(g1^2*g3^6) + (g3^2*t^8.627*y)/(g1^2*g2^6) + (t^8.672*y)/(g2^4*g3^12) + (t^8.672*y)/(g2^12*g3^4) - (t^8.82*y)/(g1^9*g2*g3^17) - (t^8.82*y)/(g1^9*g2^9*g3^9) - (t^8.82*y)/(g1^9*g2^17*g3) - (g2^12*g3^12*t^8.909*y)/g1^4 - (g2^6*g3^6*t^8.954*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1513 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ | 0.6852 | 0.8517 | 0.8045 | [X:[1.3319], M:[1.1135, 0.6681, 0.7815, 1.0, 1.0, 0.7815, 0.8865], q:[0.5525, 0.334], qb:[0.666, 0.666], phi:[0.4454]] | 2*t^2.345 + t^2.66 + t^2.672 + 2*t^3. + t^3.34 + 2*t^3.996 + 2*t^4.336 + t^4.651 + 3*t^4.689 + 2*t^4.992 + 2*t^5.017 + t^5.319 + 4*t^5.332 + 4*t^5.345 + 2*t^5.672 + 2*t^5.685 - 2*t^6. - t^4.336/y - t^4.336*y | detail | |
2102 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ | 0.6733 | 0.8548 | 0.7876 | [X:[1.6169], M:[0.7116, 0.8206, 0.3831, 1.1492, 0.8508, 0.6814, 0.7963], q:[0.8781, 0.4103], qb:[0.7389, 0.4405], phi:[0.3831]] | t^2.044 + t^2.135 + t^2.298 + t^2.389 + t^2.462 + t^2.552 + t^3.448 + t^3.702 + t^3.792 + t^4.088 + t^4.179 + t^4.27 + t^4.343 + 2*t^4.433 + t^4.506 + t^4.524 + 3*t^4.597 + 2*t^4.687 + t^4.76 + t^4.778 + 3*t^4.851 + t^4.924 + t^4.941 + t^5.014 + t^5.105 + t^5.492 + t^5.582 + t^5.746 + 2*t^5.836 + t^5.927 - t^6. - t^4.149/y - t^4.149*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
605 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7478 | 0.9314 | 0.8029 | [M:[0.8612, 0.889, 0.7502, 1.0, 1.0, 0.7502], q:[0.6943, 0.4445], qb:[0.5555, 0.5555], phi:[0.4375]] | 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y | detail |