Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55113 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ | 0.7543 | 0.9473 | 0.7962 | [M:[0.8235, 0.8235, 1.0, 1.0, 1.0, 0.8235, 0.7207], q:[0.5883, 0.5883], qb:[0.5883, 0.4117], phi:[0.4559]] | [M:[[1, 6], [0, 4], [-1, -2], [0, 0], [1, 2], [-1, 2], [0, -5]], q:[[-1, -4], [0, -2]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{7}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ | ${}M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$ | -4 | t^2.162 + 3*t^2.47 + t^2.735 + 3*t^3. + t^4.324 + 3*t^4.368 + 3*t^4.632 + 7*t^4.897 + 6*t^4.941 + 3*t^5.162 + 3*t^5.206 + 7*t^5.47 + 3*t^5.735 - 4*t^6. + t^6.486 - t^6.53 + 3*t^6.794 + 6*t^6.838 + 7*t^7.059 + 8*t^7.103 + 3*t^7.324 + 18*t^7.368 + 10*t^7.411 + 10*t^7.632 + 6*t^7.676 + 9*t^7.897 + 12*t^7.941 - 10*t^8.162 + 7*t^8.206 - 3*t^8.427 - 12*t^8.47 + t^8.648 - t^8.692 - 4*t^8.735 + 3*t^8.957 - t^4.368/y - t^6.53/y - (3*t^6.838)/y - t^7.103/y + (4*t^7.632)/y + (4*t^7.897)/y + (3*t^7.941)/y + (3*t^8.162)/y + (4*t^8.206)/y + (9*t^8.47)/y - t^8.692/y + (3*t^8.735)/y - t^4.368*y - t^6.53*y - 3*t^6.838*y - t^7.103*y + 4*t^7.632*y + 4*t^7.897*y + 3*t^7.941*y + 3*t^8.162*y + 4*t^8.206*y + 9*t^8.47*y - t^8.692*y + 3*t^8.735*y | t^2.162/g2^5 + (g2^2*t^2.47)/g1 + g2^4*t^2.47 + g1*g2^6*t^2.47 + g2^2*t^2.735 + t^3. + t^3./(g1*g2^2) + g1*g2^2*t^3. + t^4.324/g2^10 + t^4.368/(g1*g2) + g2*t^4.368 + g1*g2^3*t^4.368 + t^4.632/(g1*g2^3) + t^4.632/g2 + g1*g2*t^4.632 + t^4.897/(g1^2*g2^7) + t^4.897/(g1*g2^5) + (3*t^4.897)/g2^3 + (g1*t^4.897)/g2 + g1^2*g2*t^4.897 + (g2^4*t^4.941)/g1^2 + (g2^6*t^4.941)/g1 + 2*g2^8*t^4.941 + g1*g2^10*t^4.941 + g1^2*g2^12*t^4.941 + t^5.162/(g1*g2^7) + t^5.162/g2^5 + (g1*t^5.162)/g2^3 + (g2^4*t^5.206)/g1 + g2^6*t^5.206 + g1*g2^8*t^5.206 + t^5.47/g1^2 + (g2^2*t^5.47)/g1 + 3*g2^4*t^5.47 + g1*g2^6*t^5.47 + g1^2*g2^8*t^5.47 + t^5.735/g1 + g2^2*t^5.735 + g1*g2^4*t^5.735 - 2*t^6. - t^6./(g1*g2^2) - g1*g2^2*t^6. + t^6.486/g2^15 - t^6.53/g2^4 + t^6.794/(g1*g2^8) + t^6.794/g2^6 + (g1*t^6.794)/g2^4 + (g2*t^6.838)/g1^2 + (g2^3*t^6.838)/g1 + 2*g2^5*t^6.838 + g1*g2^7*t^6.838 + g1^2*g2^9*t^6.838 + t^7.059/(g1^2*g2^12) + t^7.059/(g1*g2^10) + (3*t^7.059)/g2^8 + (g1*t^7.059)/g2^6 + (g1^2*t^7.059)/g2^4 + t^7.103/(g1^2*g2) + (2*g2*t^7.103)/g1 + 2*g2^3*t^7.103 + 2*g1*g2^5*t^7.103 + g1^2*g2^7*t^7.103 + t^7.324/(g1*g2^12) + t^7.324/g2^10 + (g1*t^7.324)/g2^8 + t^7.368/(g1^3*g2^5) + (2*t^7.368)/(g1^2*g2^3) + (4*t^7.368)/(g1*g2) + 4*g2*t^7.368 + 4*g1*g2^3*t^7.368 + 2*g1^2*g2^5*t^7.368 + g1^3*g2^7*t^7.368 + (g2^6*t^7.411)/g1^3 + (g2^8*t^7.411)/g1^2 + (2*g2^10*t^7.411)/g1 + 2*g2^12*t^7.411 + 2*g1*g2^14*t^7.411 + g1^2*g2^16*t^7.411 + g1^3*g2^18*t^7.411 + (2*t^7.632)/(g1^2*g2^5) + t^7.632/(g1*g2^3) + (4*t^7.632)/g2 + g1*g2*t^7.632 + 2*g1^2*g2^3*t^7.632 + (g2^6*t^7.676)/g1^2 + (g2^8*t^7.676)/g1 + 2*g2^10*t^7.676 + g1*g2^12*t^7.676 + g1^2*g2^14*t^7.676 + t^7.897/(g1^3*g2^9) + t^7.897/(g1^2*g2^7) + (2*t^7.897)/(g1*g2^5) + t^7.897/g2^3 + (2*g1*t^7.897)/g2 + g1^2*g2*t^7.897 + g1^3*g2^3*t^7.897 + (g2^2*t^7.941)/g1^3 + (g2^4*t^7.941)/g1^2 + (3*g2^6*t^7.941)/g1 + 2*g2^8*t^7.941 + 3*g1*g2^10*t^7.941 + g1^2*g2^12*t^7.941 + g1^3*g2^14*t^7.941 - t^8.162/(g1^2*g2^9) - (2*t^8.162)/(g1*g2^7) - (4*t^8.162)/g2^5 - (2*g1*t^8.162)/g2^3 - (g1^2*t^8.162)/g2 + (g2^2*t^8.206)/g1^2 + (g2^4*t^8.206)/g1 + 3*g2^6*t^8.206 + g1*g2^8*t^8.206 + g1^2*g2^10*t^8.206 - t^8.427/(g1*g2^9) - t^8.427/g2^7 - (g1*t^8.427)/g2^5 - t^8.47/g1^2 - (3*g2^2*t^8.47)/g1 - 4*g2^4*t^8.47 - 3*g1*g2^6*t^8.47 - g1^2*g2^8*t^8.47 + t^8.648/g2^20 - t^8.692/g2^9 - t^8.735/g1 - 2*g2^2*t^8.735 - g1*g2^4*t^8.735 + t^8.957/(g1*g2^13) + t^8.957/g2^11 + (g1*t^8.957)/g2^9 - (g2*t^4.368)/y - t^6.53/(g2^4*y) - (g2^3*t^6.838)/(g1*y) - (g2^5*t^6.838)/y - (g1*g2^7*t^6.838)/y - (g2^3*t^7.103)/y + t^7.632/(g1*g2^3*y) + (2*t^7.632)/(g2*y) + (g1*g2*t^7.632)/y + t^7.897/(g1*g2^5*y) + (2*t^7.897)/(g2^3*y) + (g1*t^7.897)/(g2*y) + (g2^6*t^7.941)/(g1*y) + (g2^8*t^7.941)/y + (g1*g2^10*t^7.941)/y + t^8.162/(g1*g2^7*y) + t^8.162/(g2^5*y) + (g1*t^8.162)/(g2^3*y) + (g2^4*t^8.206)/(g1*y) + (2*g2^6*t^8.206)/y + (g1*g2^8*t^8.206)/y + t^8.47/(g1^2*y) + (2*g2^2*t^8.47)/(g1*y) + (3*g2^4*t^8.47)/y + (2*g1*g2^6*t^8.47)/y + (g1^2*g2^8*t^8.47)/y - t^8.692/(g2^9*y) + t^8.735/(g1*y) + (g2^2*t^8.735)/y + (g1*g2^4*t^8.735)/y - g2*t^4.368*y - (t^6.53*y)/g2^4 - (g2^3*t^6.838*y)/g1 - g2^5*t^6.838*y - g1*g2^7*t^6.838*y - g2^3*t^7.103*y + (t^7.632*y)/(g1*g2^3) + (2*t^7.632*y)/g2 + g1*g2*t^7.632*y + (t^7.897*y)/(g1*g2^5) + (2*t^7.897*y)/g2^3 + (g1*t^7.897*y)/g2 + (g2^6*t^7.941*y)/g1 + g2^8*t^7.941*y + g1*g2^10*t^7.941*y + (t^8.162*y)/(g1*g2^7) + (t^8.162*y)/g2^5 + (g1*t^8.162*y)/g2^3 + (g2^4*t^8.206*y)/g1 + 2*g2^6*t^8.206*y + g1*g2^8*t^8.206*y + (t^8.47*y)/g1^2 + (2*g2^2*t^8.47*y)/g1 + 3*g2^4*t^8.47*y + 2*g1*g2^6*t^8.47*y + g1^2*g2^8*t^8.47*y - (t^8.692*y)/g2^9 + (t^8.735*y)/g1 + g2^2*t^8.735*y + g1*g2^4*t^8.735*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
56776 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ + ${ }M_{3}M_{6}$ | 0.7438 | 0.9357 | 0.7949 | [M:[0.7888, 0.8592, 1.0704, 1.0, 0.9296, 0.9296, 0.676], q:[0.6408, 0.5704], qb:[0.5, 0.4296], phi:[0.4648]] | t^2.028 + t^2.366 + t^2.578 + 3*t^2.789 + t^3. + t^3.211 + t^4.056 + t^4.183 + 3*t^4.394 + 3*t^4.606 + t^4.733 + 5*t^4.817 + t^4.944 + 2*t^5.028 + 4*t^5.155 + 2*t^5.239 + 3*t^5.366 + 6*t^5.578 + t^5.789 - t^4.394/y - t^4.394*y | detail | |
56777 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}^{2}$ + ${ }M_{3}M_{8}$ | 0.7556 | 0.9503 | 0.7951 | [M:[0.7959, 0.8235, 1.0276, 1.0, 0.9724, 0.851, 0.7207, 0.9724], q:[0.6159, 0.5883], qb:[0.5607, 0.4117], phi:[0.4559]] | t^2.162 + t^2.388 + t^2.47 + t^2.553 + t^2.735 + 2*t^2.917 + t^3. + t^4.285 + t^4.324 + t^4.368 + t^4.45 + t^4.55 + t^4.632 + t^4.715 + t^4.732 + t^4.775 + t^4.814 + t^4.858 + 3*t^4.897 + 2*t^4.941 + t^4.98 + t^5.023 + t^5.063 + 2*t^5.079 + t^5.106 + t^5.123 + t^5.162 + t^5.206 + t^5.288 + 2*t^5.305 + 2*t^5.388 + 3*t^5.47 + 2*t^5.652 + t^5.735 + 2*t^5.834 - 3*t^6. - t^4.368/y - t^4.368*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46865 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ | 0.7686 | 0.9726 | 0.7902 | [M:[0.7511, 0.8907, 1.0, 0.8603, 1.0, 0.7511, 0.6715], q:[0.5546, 0.6943], qb:[0.5546, 0.4454], phi:[0.4378]] | t^2.015 + 2*t^2.253 + t^2.581 + t^2.627 + t^2.672 + 2*t^3. + t^4.029 + 2*t^4.268 + 2*t^4.313 + 3*t^4.506 + t^4.595 + 4*t^4.641 + t^4.687 + t^4.732 + 2*t^4.834 + 2*t^4.88 + 2*t^4.925 + 2*t^5.015 + 2*t^5.06 + t^5.162 + t^5.208 + 5*t^5.253 + t^5.299 + t^5.344 + t^5.479 + 2*t^5.627 - 3*t^6. - t^4.313/y - t^4.313*y | detail |