Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46120 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_1$ 0.7904 0.9838 0.8034 [X:[], M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] [X:[], M:[[-4, -2, 1], [-2, -4, 1], [0, -2, -1], [-2, 0, -1], [-2, -2, 0]], q:[[2, 2, -1], [2, 0, 0]], qb:[[0, 2, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3 {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ \phi_1^2$, $ M_4$, $ M_3$, $ M_2$, $ M_1$, $ q_2\tilde{q}_1$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$ $M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$ -10 6*t^2.29 + t^3.71 + 21*t^4.57 + 10*t^4.86 - 10*t^6. + 56*t^6.86 + 45*t^7.14 - 65*t^8.29 - 15*t^8.57 - t^4.14/y - (6*t^6.43)/y + (15*t^7.57)/y + (6*t^7.86)/y - (21*t^8.71)/y - t^4.14*y - 6*t^6.43*y + 15*t^7.57*y + 6*t^7.86*y - 21*t^8.71*y (2*t^2.29)/(g1^2*g2^2) + t^2.29/(g1^2*g3) + t^2.29/(g2^2*g3) + (g3*t^2.29)/(g1^2*g2^4) + (g3*t^2.29)/(g1^4*g2^2) + g1^2*g2^2*t^3.71 + t^4.57/(g1^2*g2^6) + (5*t^4.57)/(g1^4*g2^4) + t^4.57/(g1^6*g2^2) + t^4.57/(g1^4*g3^2) + t^4.57/(g2^4*g3^2) + t^4.57/(g1^2*g2^2*g3^2) + (2*t^4.57)/(g1^2*g2^4*g3) + (2*t^4.57)/(g1^4*g2^2*g3) + (2*g3*t^4.57)/(g1^4*g2^6) + (2*g3*t^4.57)/(g1^6*g2^4) + (g3^2*t^4.57)/(g1^4*g2^8) + (g3^2*t^4.57)/(g1^6*g2^6) + (g3^2*t^4.57)/(g1^8*g2^4) + (g1^3*t^4.86)/g2 + 2*g1*g2*t^4.86 + (g2^3*t^4.86)/g1 + (g1^3*g2^3*t^4.86)/g3^2 + (g1^3*g2*t^4.86)/g3 + (g1*g2^3*t^4.86)/g3 + (g1*g3*t^4.86)/g2 + (g2*g3*t^4.86)/g1 + (g3^2*t^4.86)/(g1*g2) - 2*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 - (g1^2*g2^2*t^6.)/g3^2 - (g1^2*t^6.)/g3 - (g2^2*t^6.)/g3 - (g3*t^6.)/g1^2 - (g3*t^6.)/g2^2 - (g3^2*t^6.)/(g1^2*g2^2) + (2*t^6.86)/(g1^4*g2^8) + (8*t^6.86)/(g1^6*g2^6) + (2*t^6.86)/(g1^8*g2^4) + t^6.86/(g1^6*g3^3) + t^6.86/(g2^6*g3^3) + t^6.86/(g1^2*g2^4*g3^3) + t^6.86/(g1^4*g2^2*g3^3) + (2*t^6.86)/(g1^2*g2^6*g3^2) + (2*t^6.86)/(g1^4*g2^4*g3^2) + (2*t^6.86)/(g1^6*g2^2*g3^2) + t^6.86/(g1^2*g2^8*g3) + (5*t^6.86)/(g1^4*g2^6*g3) + (5*t^6.86)/(g1^6*g2^4*g3) + t^6.86/(g1^8*g2^2*g3) + (g3*t^6.86)/(g1^4*g2^10) + (5*g3*t^6.86)/(g1^6*g2^8) + (5*g3*t^6.86)/(g1^8*g2^6) + (g3*t^6.86)/(g1^10*g2^4) + (2*g3^2*t^6.86)/(g1^6*g2^10) + (2*g3^2*t^6.86)/(g1^8*g2^8) + (2*g3^2*t^6.86)/(g1^10*g2^6) + (g3^3*t^6.86)/(g1^6*g2^12) + (g3^3*t^6.86)/(g1^8*g2^10) + (g3^3*t^6.86)/(g1^10*g2^8) + (g3^3*t^6.86)/(g1^12*g2^6) + (3*g1*t^7.14)/g2^3 + (5*t^7.14)/(g1*g2) + (3*g2*t^7.14)/g1^3 + (g1^3*g2*t^7.14)/g3^3 + (g1*g2^3*t^7.14)/g3^3 + (g1^3*t^7.14)/(g2*g3^2) + (3*g1*g2*t^7.14)/g3^2 + (g2^3*t^7.14)/(g1*g3^2) + (g1^3*t^7.14)/(g2^3*g3) + (4*g1*t^7.14)/(g2*g3) + (4*g2*t^7.14)/(g1*g3) + (g2^3*t^7.14)/(g1^3*g3) + (g1*g3*t^7.14)/g2^5 + (4*g3*t^7.14)/(g1*g2^3) + (4*g3*t^7.14)/(g1^3*g2) + (g2*g3*t^7.14)/g1^5 + (g3^2*t^7.14)/(g1*g2^5) + (3*g3^2*t^7.14)/(g1^3*g2^3) + (g3^2*t^7.14)/(g1^5*g2) + (g3^3*t^7.14)/(g1^3*g2^5) + (g3^3*t^7.14)/(g1^5*g2^3) - (4*t^8.29)/g1^4 - (4*t^8.29)/g2^4 - (9*t^8.29)/(g1^2*g2^2) - (g1^2*t^8.29)/g3^3 - (g2^2*t^8.29)/g3^3 - (4*t^8.29)/g3^2 - (g1^2*t^8.29)/(g2^2*g3^2) - (g2^2*t^8.29)/(g1^2*g3^2) - (7*t^8.29)/(g1^2*g3) - (g1^2*t^8.29)/(g2^4*g3) - (7*t^8.29)/(g2^2*g3) - (g2^2*t^8.29)/(g1^4*g3) - (g3*t^8.29)/g1^6 - (g3*t^8.29)/g2^6 - (7*g3*t^8.29)/(g1^2*g2^4) - (7*g3*t^8.29)/(g1^4*g2^2) - (g3^2*t^8.29)/(g1^2*g2^6) - (4*g3^2*t^8.29)/(g1^4*g2^4) - (g3^2*t^8.29)/(g1^6*g2^2) - (g3^3*t^8.29)/(g1^4*g2^6) - (g3^3*t^8.29)/(g1^6*g2^4) - g1^5*g2*t^8.57 - 3*g1^3*g2^3*t^8.57 - g1*g2^5*t^8.57 - (g1^5*g2^5*t^8.57)/g3^2 - (2*g1^5*g2^3*t^8.57)/g3 - (2*g1^3*g2^5*t^8.57)/g3 - 2*g1^3*g2*g3*t^8.57 - 2*g1*g2^3*g3*t^8.57 - g1*g2*g3^2*t^8.57 - t^4.14/(g1*g2*y) - (2*t^6.43)/(g1^3*g2^3*y) - t^6.43/(g1*g2^3*g3*y) - t^6.43/(g1^3*g2*g3*y) - (g3*t^6.43)/(g1^3*g2^5*y) - (g3*t^6.43)/(g1^5*g2^3*y) + t^7.57/(g1^2*g2^6*y) + (3*t^7.57)/(g1^4*g2^4*y) + t^7.57/(g1^6*g2^2*y) + t^7.57/(g1^2*g2^2*g3^2*y) + (2*t^7.57)/(g1^2*g2^4*g3*y) + (2*t^7.57)/(g1^4*g2^2*g3*y) + (2*g3*t^7.57)/(g1^4*g2^6*y) + (2*g3*t^7.57)/(g1^6*g2^4*y) + (g3^2*t^7.57)/(g1^6*g2^6*y) + (2*g1*g2*t^7.86)/y + (g1^3*g2*t^7.86)/(g3*y) + (g1*g2^3*t^7.86)/(g3*y) + (g1*g3*t^7.86)/(g2*y) + (g2*g3*t^7.86)/(g1*y) - t^8.71/(g1^3*g2^7*y) - (5*t^8.71)/(g1^5*g2^5*y) - t^8.71/(g1^7*g2^3*y) - t^8.71/(g1*g2^5*g3^2*y) - t^8.71/(g1^3*g2^3*g3^2*y) - t^8.71/(g1^5*g2*g3^2*y) - (2*t^8.71)/(g1^3*g2^5*g3*y) - (2*t^8.71)/(g1^5*g2^3*g3*y) - (2*g3*t^8.71)/(g1^5*g2^7*y) - (2*g3*t^8.71)/(g1^7*g2^5*y) - (g3^2*t^8.71)/(g1^5*g2^9*y) - (g3^2*t^8.71)/(g1^7*g2^7*y) - (g3^2*t^8.71)/(g1^9*g2^5*y) - (t^4.14*y)/(g1*g2) - (2*t^6.43*y)/(g1^3*g2^3) - (t^6.43*y)/(g1*g2^3*g3) - (t^6.43*y)/(g1^3*g2*g3) - (g3*t^6.43*y)/(g1^3*g2^5) - (g3*t^6.43*y)/(g1^5*g2^3) + (t^7.57*y)/(g1^2*g2^6) + (3*t^7.57*y)/(g1^4*g2^4) + (t^7.57*y)/(g1^6*g2^2) + (t^7.57*y)/(g1^2*g2^2*g3^2) + (2*t^7.57*y)/(g1^2*g2^4*g3) + (2*t^7.57*y)/(g1^4*g2^2*g3) + (2*g3*t^7.57*y)/(g1^4*g2^6) + (2*g3*t^7.57*y)/(g1^6*g2^4) + (g3^2*t^7.57*y)/(g1^6*g2^6) + 2*g1*g2*t^7.86*y + (g1^3*g2*t^7.86*y)/g3 + (g1*g2^3*t^7.86*y)/g3 + (g1*g3*t^7.86*y)/g2 + (g2*g3*t^7.86*y)/g1 - (t^8.71*y)/(g1^3*g2^7) - (5*t^8.71*y)/(g1^5*g2^5) - (t^8.71*y)/(g1^7*g2^3) - (t^8.71*y)/(g1*g2^5*g3^2) - (t^8.71*y)/(g1^3*g2^3*g3^2) - (t^8.71*y)/(g1^5*g2*g3^2) - (2*t^8.71*y)/(g1^3*g2^5*g3) - (2*t^8.71*y)/(g1^5*g2^3*g3) - (2*g3*t^8.71*y)/(g1^5*g2^7) - (2*g3*t^8.71*y)/(g1^7*g2^5) - (g3^2*t^8.71*y)/(g1^5*g2^9) - (g3^2*t^8.71*y)/(g1^7*g2^7) - (g3^2*t^8.71*y)/(g1^9*g2^5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46568 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_1$ + $ M_1^2$ 0.7536 0.9338 0.807 [X:[], M:[1.0, 0.8465, 0.693, 0.8465, 0.8465], q:[0.5, 0.5], qb:[0.6535, 0.6535], phi:[0.4233]] t^2.08 + 4*t^2.54 + t^3. + t^3.46 + t^4.16 + 3*t^4.27 + 4*t^4.62 + 4*t^4.73 + 11*t^5.08 + 3*t^5.19 + t^5.54 - 3*t^6. - t^4.27/y - t^4.27*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45955 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ 0.791 0.9858 0.8024 [X:[], M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.6314, 0.604], qb:[0.604, 0.6314], phi:[0.3823]] t^2.21 + 5*t^2.29 + t^3.62 + t^4.42 + 5*t^4.51 + 15*t^4.59 + 3*t^4.77 + 4*t^4.85 + 3*t^4.94 + t^5.84 + t^5.92 - 8*t^6. - t^4.15/y - t^4.15*y detail