Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46622 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}^{2}$ | 0.7904 | 0.9838 | 0.8034 | [M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619, 0.7619, 1.2381], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] | [M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [0, 0, -4, -4], [0, -4, 0, -4], [-4, 0, 0, -4], [0, -4, -4, 0], [2, 2, 2, 2]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 | {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, M6: 16/21, M7: 26/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ | ${}M_{1}M_{7}$, ${ }M_{2}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$ | -10 | 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. + 56*t^6.857 + 45*t^7.143 - 65*t^8.286 - 15*t^8.571 - t^4.143/y - (6*t^6.429)/y + (15*t^7.571)/y + (6*t^7.857)/y - (21*t^8.714)/y - t^4.143*y - 6*t^6.429*y + 15*t^7.571*y + 6*t^7.857*y - 21*t^8.714*y | t^2.286/(g1^4*g2^4) + t^2.286/(g1^4*g3^4) + t^2.286/(g2^4*g3^4) + t^2.286/(g1^4*g4^4) + t^2.286/(g2^4*g4^4) + t^2.286/(g3^4*g4^4) + g1^2*g2^2*g3^2*g4^2*t^3.714 + t^4.571/(g1^8*g2^8) + t^4.571/(g1^8*g3^8) + t^4.571/(g2^8*g3^8) + t^4.571/(g1^4*g2^4*g3^8) + t^4.571/(g1^4*g2^8*g3^4) + t^4.571/(g1^8*g2^4*g3^4) + t^4.571/(g1^8*g4^8) + t^4.571/(g2^8*g4^8) + t^4.571/(g1^4*g2^4*g4^8) + t^4.571/(g3^8*g4^8) + t^4.571/(g1^4*g3^4*g4^8) + t^4.571/(g2^4*g3^4*g4^8) + t^4.571/(g1^4*g2^8*g4^4) + t^4.571/(g1^8*g2^4*g4^4) + t^4.571/(g1^4*g3^8*g4^4) + t^4.571/(g2^4*g3^8*g4^4) + t^4.571/(g1^8*g3^4*g4^4) + t^4.571/(g2^8*g3^4*g4^4) + (3*t^4.571)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*t^4.857)/(g2*g3*g4) + (g1^3*g2^3*t^4.857)/(g3*g4) + (g2^7*t^4.857)/(g1*g3*g4) + (g1^3*g3^3*t^4.857)/(g2*g4) + (g2^3*g3^3*t^4.857)/(g1*g4) + (g3^7*t^4.857)/(g1*g2*g4) + (g1^3*g4^3*t^4.857)/(g2*g3) + (g2^3*g4^3*t^4.857)/(g1*g3) + (g3^3*g4^3*t^4.857)/(g1*g2) + (g4^7*t^4.857)/(g1*g2*g3) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 + (g1^2*g2^2*t^6.)/(g3^2*g4^2) + (g1^2*g3^2*t^6.)/(g2^2*g4^2) + (g2^2*g3^2*t^6.)/(g1^2*g4^2) + (g1^2*g4^2*t^6.)/(g2^2*g3^2) + (g2^2*g4^2*t^6.)/(g1^2*g3^2) + (g3^2*g4^2*t^6.)/(g1^2*g2^2) - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 + t^6.857/(g1^12*g2^12) + t^6.857/(g1^12*g3^12) + t^6.857/(g2^12*g3^12) + t^6.857/(g1^4*g2^8*g3^12) + t^6.857/(g1^8*g2^4*g3^12) + t^6.857/(g1^4*g2^12*g3^8) + t^6.857/(g1^8*g2^8*g3^8) + t^6.857/(g1^12*g2^4*g3^8) + t^6.857/(g1^8*g2^12*g3^4) + t^6.857/(g1^12*g2^8*g3^4) + t^6.857/(g1^12*g4^12) + t^6.857/(g2^12*g4^12) + t^6.857/(g1^4*g2^8*g4^12) + t^6.857/(g1^8*g2^4*g4^12) + t^6.857/(g3^12*g4^12) + t^6.857/(g1^4*g3^8*g4^12) + t^6.857/(g2^4*g3^8*g4^12) + t^6.857/(g1^8*g3^4*g4^12) + t^6.857/(g2^8*g3^4*g4^12) + t^6.857/(g1^4*g2^4*g3^4*g4^12) + t^6.857/(g1^4*g2^12*g4^8) + t^6.857/(g1^8*g2^8*g4^8) + t^6.857/(g1^12*g2^4*g4^8) + t^6.857/(g1^4*g3^12*g4^8) + t^6.857/(g2^4*g3^12*g4^8) + t^6.857/(g1^8*g3^8*g4^8) + t^6.857/(g2^8*g3^8*g4^8) + (3*t^6.857)/(g1^4*g2^4*g3^8*g4^8) + t^6.857/(g1^12*g3^4*g4^8) + t^6.857/(g2^12*g3^4*g4^8) + (3*t^6.857)/(g1^4*g2^8*g3^4*g4^8) + (3*t^6.857)/(g1^8*g2^4*g3^4*g4^8) + t^6.857/(g1^8*g2^12*g4^4) + t^6.857/(g1^12*g2^8*g4^4) + t^6.857/(g1^8*g3^12*g4^4) + t^6.857/(g2^8*g3^12*g4^4) + t^6.857/(g1^4*g2^4*g3^12*g4^4) + t^6.857/(g1^12*g3^8*g4^4) + t^6.857/(g2^12*g3^8*g4^4) + (3*t^6.857)/(g1^4*g2^8*g3^8*g4^4) + (3*t^6.857)/(g1^8*g2^4*g3^8*g4^4) + t^6.857/(g1^4*g2^12*g3^4*g4^4) + (3*t^6.857)/(g1^8*g2^8*g3^4*g4^4) + t^6.857/(g1^12*g2^4*g3^4*g4^4) + (g1^7*t^7.143)/(g2*g3^5*g4^5) + (g1^3*g2^3*t^7.143)/(g3^5*g4^5) + (g2^7*t^7.143)/(g1*g3^5*g4^5) + (g1^7*t^7.143)/(g2^5*g3*g4^5) + (2*g1^3*t^7.143)/(g2*g3*g4^5) + (2*g2^3*t^7.143)/(g1*g3*g4^5) + (g2^7*t^7.143)/(g1^5*g3*g4^5) + (g1^3*g3^3*t^7.143)/(g2^5*g4^5) + (2*g3^3*t^7.143)/(g1*g2*g4^5) + (g2^3*g3^3*t^7.143)/(g1^5*g4^5) + (g3^7*t^7.143)/(g1*g2^5*g4^5) + (g3^7*t^7.143)/(g1^5*g2*g4^5) + (g1^7*t^7.143)/(g2^5*g3^5*g4) + (2*g1^3*t^7.143)/(g2*g3^5*g4) + (2*g2^3*t^7.143)/(g1*g3^5*g4) + (g2^7*t^7.143)/(g1^5*g3^5*g4) + (2*g1^3*t^7.143)/(g2^5*g3*g4) + (3*t^7.143)/(g1*g2*g3*g4) + (2*g2^3*t^7.143)/(g1^5*g3*g4) + (2*g3^3*t^7.143)/(g1*g2^5*g4) + (2*g3^3*t^7.143)/(g1^5*g2*g4) + (g3^7*t^7.143)/(g1^5*g2^5*g4) + (g1^3*g4^3*t^7.143)/(g2^5*g3^5) + (2*g4^3*t^7.143)/(g1*g2*g3^5) + (g2^3*g4^3*t^7.143)/(g1^5*g3^5) + (2*g4^3*t^7.143)/(g1*g2^5*g3) + (2*g4^3*t^7.143)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.143)/(g1^5*g2^5) + (g4^7*t^7.143)/(g1*g2^5*g3^5) + (g4^7*t^7.143)/(g1^5*g2*g3^5) + (g4^7*t^7.143)/(g1^5*g2^5*g3) - (2*t^8.286)/g1^8 - (2*t^8.286)/g2^8 - (7*t^8.286)/(g1^4*g2^4) - (2*t^8.286)/g3^8 - (g1^4*t^8.286)/(g2^4*g3^8) - (g2^4*t^8.286)/(g1^4*g3^8) - (7*t^8.286)/(g1^4*g3^4) - (g1^4*t^8.286)/(g2^8*g3^4) - (7*t^8.286)/(g2^4*g3^4) - (g2^4*t^8.286)/(g1^8*g3^4) - (g3^4*t^8.286)/(g1^4*g2^8) - (g3^4*t^8.286)/(g1^8*g2^4) - (2*t^8.286)/g4^8 - (g1^4*t^8.286)/(g2^4*g4^8) - (g2^4*t^8.286)/(g1^4*g4^8) - (g1^4*t^8.286)/(g3^4*g4^8) - (g2^4*t^8.286)/(g3^4*g4^8) - (g3^4*t^8.286)/(g1^4*g4^8) - (g3^4*t^8.286)/(g2^4*g4^8) + (g1^2*g2^2*t^8.286)/(g3^6*g4^6) + (g1^2*t^8.286)/(g2^2*g3^2*g4^6) + (g2^2*t^8.286)/(g1^2*g3^2*g4^6) + (g1^2*g3^2*t^8.286)/(g2^6*g4^6) + (g3^2*t^8.286)/(g1^2*g2^2*g4^6) + (g2^2*g3^2*t^8.286)/(g1^6*g4^6) - (7*t^8.286)/(g1^4*g4^4) - (g1^4*t^8.286)/(g2^8*g4^4) - (7*t^8.286)/(g2^4*g4^4) - (g2^4*t^8.286)/(g1^8*g4^4) - (g1^4*t^8.286)/(g3^8*g4^4) - (g2^4*t^8.286)/(g3^8*g4^4) - (7*t^8.286)/(g3^4*g4^4) - (3*g1^4*t^8.286)/(g2^4*g3^4*g4^4) - (3*g2^4*t^8.286)/(g1^4*g3^4*g4^4) - (g3^4*t^8.286)/(g1^8*g4^4) - (g3^4*t^8.286)/(g2^8*g4^4) - (3*g3^4*t^8.286)/(g1^4*g2^4*g4^4) + (g1^2*t^8.286)/(g2^2*g3^6*g4^2) + (g2^2*t^8.286)/(g1^2*g3^6*g4^2) + (g1^2*t^8.286)/(g2^6*g3^2*g4^2) + (3*t^8.286)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*t^8.286)/(g1^6*g3^2*g4^2) + (g3^2*t^8.286)/(g1^2*g2^6*g4^2) + (g3^2*t^8.286)/(g1^6*g2^2*g4^2) + (g1^2*g4^2*t^8.286)/(g2^6*g3^6) + (g4^2*t^8.286)/(g1^2*g2^2*g3^6) + (g2^2*g4^2*t^8.286)/(g1^6*g3^6) + (g4^2*t^8.286)/(g1^2*g2^6*g3^2) + (g4^2*t^8.286)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.286)/(g1^6*g2^6) - (g4^4*t^8.286)/(g1^4*g2^8) - (g4^4*t^8.286)/(g1^8*g2^4) - (g4^4*t^8.286)/(g1^4*g3^8) - (g4^4*t^8.286)/(g2^4*g3^8) - (g4^4*t^8.286)/(g1^8*g3^4) - (g4^4*t^8.286)/(g2^8*g3^4) - (3*g4^4*t^8.286)/(g1^4*g2^4*g3^4) - (g1^7*g2^3*g3^3*t^8.571)/g4 - (g1^3*g2^7*g3^3*t^8.571)/g4 - (g1^3*g2^3*g3^7*t^8.571)/g4 - (g1^7*g2^3*g4^3*t^8.571)/g3 - (g1^3*g2^7*g4^3*t^8.571)/g3 - (g1^7*g3^3*g4^3*t^8.571)/g2 - 3*g1^3*g2^3*g3^3*g4^3*t^8.571 - (g2^7*g3^3*g4^3*t^8.571)/g1 - (g1^3*g3^7*g4^3*t^8.571)/g2 - (g2^3*g3^7*g4^3*t^8.571)/g1 - (g1^3*g2^3*g4^7*t^8.571)/g3 - (g1^3*g3^3*g4^7*t^8.571)/g2 - (g2^3*g3^3*g4^7*t^8.571)/g1 - t^4.143/(g1*g2*g3*g4*y) - t^6.429/(g1*g2*g3^5*g4^5*y) - t^6.429/(g1*g2^5*g3*g4^5*y) - t^6.429/(g1^5*g2*g3*g4^5*y) - t^6.429/(g1*g2^5*g3^5*g4*y) - t^6.429/(g1^5*g2*g3^5*g4*y) - t^6.429/(g1^5*g2^5*g3*g4*y) + t^7.571/(g1^4*g2^4*g3^8*y) + t^7.571/(g1^4*g2^8*g3^4*y) + t^7.571/(g1^8*g2^4*g3^4*y) + t^7.571/(g1^4*g2^4*g4^8*y) + t^7.571/(g1^4*g3^4*g4^8*y) + t^7.571/(g2^4*g3^4*g4^8*y) + t^7.571/(g1^4*g2^8*g4^4*y) + t^7.571/(g1^8*g2^4*g4^4*y) + t^7.571/(g1^4*g3^8*g4^4*y) + t^7.571/(g2^4*g3^8*g4^4*y) + t^7.571/(g1^8*g3^4*g4^4*y) + t^7.571/(g2^8*g3^4*g4^4*y) + (3*t^7.571)/(g1^4*g2^4*g3^4*g4^4*y) + (g1^3*g2^3*t^7.857)/(g3*g4*y) + (g1^3*g3^3*t^7.857)/(g2*g4*y) + (g2^3*g3^3*t^7.857)/(g1*g4*y) + (g1^3*g4^3*t^7.857)/(g2*g3*y) + (g2^3*g4^3*t^7.857)/(g1*g3*y) + (g3^3*g4^3*t^7.857)/(g1*g2*y) - t^8.714/(g1*g2*g3^9*g4^9*y) - t^8.714/(g1*g2^5*g3^5*g4^9*y) - t^8.714/(g1^5*g2*g3^5*g4^9*y) - t^8.714/(g1*g2^9*g3*g4^9*y) - t^8.714/(g1^5*g2^5*g3*g4^9*y) - t^8.714/(g1^9*g2*g3*g4^9*y) - t^8.714/(g1*g2^5*g3^9*g4^5*y) - t^8.714/(g1^5*g2*g3^9*g4^5*y) - t^8.714/(g1*g2^9*g3^5*g4^5*y) - (3*t^8.714)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.714/(g1^9*g2*g3^5*g4^5*y) - t^8.714/(g1^5*g2^9*g3*g4^5*y) - t^8.714/(g1^9*g2^5*g3*g4^5*y) - t^8.714/(g1*g2^9*g3^9*g4*y) - t^8.714/(g1^5*g2^5*g3^9*g4*y) - t^8.714/(g1^9*g2*g3^9*g4*y) - t^8.714/(g1^5*g2^9*g3^5*g4*y) - t^8.714/(g1^9*g2^5*g3^5*g4*y) - t^8.714/(g1^9*g2^9*g3*g4*y) - (t^4.143*y)/(g1*g2*g3*g4) - (t^6.429*y)/(g1*g2*g3^5*g4^5) - (t^6.429*y)/(g1*g2^5*g3*g4^5) - (t^6.429*y)/(g1^5*g2*g3*g4^5) - (t^6.429*y)/(g1*g2^5*g3^5*g4) - (t^6.429*y)/(g1^5*g2*g3^5*g4) - (t^6.429*y)/(g1^5*g2^5*g3*g4) + (t^7.571*y)/(g1^4*g2^4*g3^8) + (t^7.571*y)/(g1^4*g2^8*g3^4) + (t^7.571*y)/(g1^8*g2^4*g3^4) + (t^7.571*y)/(g1^4*g2^4*g4^8) + (t^7.571*y)/(g1^4*g3^4*g4^8) + (t^7.571*y)/(g2^4*g3^4*g4^8) + (t^7.571*y)/(g1^4*g2^8*g4^4) + (t^7.571*y)/(g1^8*g2^4*g4^4) + (t^7.571*y)/(g1^4*g3^8*g4^4) + (t^7.571*y)/(g2^4*g3^8*g4^4) + (t^7.571*y)/(g1^8*g3^4*g4^4) + (t^7.571*y)/(g2^8*g3^4*g4^4) + (3*t^7.571*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g2^3*t^7.857*y)/(g3*g4) + (g1^3*g3^3*t^7.857*y)/(g2*g4) + (g2^3*g3^3*t^7.857*y)/(g1*g4) + (g1^3*g4^3*t^7.857*y)/(g2*g3) + (g2^3*g4^3*t^7.857*y)/(g1*g3) + (g3^3*g4^3*t^7.857*y)/(g1*g2) - (t^8.714*y)/(g1*g2*g3^9*g4^9) - (t^8.714*y)/(g1*g2^5*g3^5*g4^9) - (t^8.714*y)/(g1^5*g2*g3^5*g4^9) - (t^8.714*y)/(g1*g2^9*g3*g4^9) - (t^8.714*y)/(g1^5*g2^5*g3*g4^9) - (t^8.714*y)/(g1^9*g2*g3*g4^9) - (t^8.714*y)/(g1*g2^5*g3^9*g4^5) - (t^8.714*y)/(g1^5*g2*g3^9*g4^5) - (t^8.714*y)/(g1*g2^9*g3^5*g4^5) - (3*t^8.714*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.714*y)/(g1^9*g2*g3^5*g4^5) - (t^8.714*y)/(g1^5*g2^9*g3*g4^5) - (t^8.714*y)/(g1^9*g2^5*g3*g4^5) - (t^8.714*y)/(g1*g2^9*g3^9*g4) - (t^8.714*y)/(g1^5*g2^5*g3^9*g4) - (t^8.714*y)/(g1^9*g2*g3^9*g4) - (t^8.714*y)/(g1^5*g2^9*g3^5*g4) - (t^8.714*y)/(g1^9*g2^5*g3^5*g4) - (t^8.714*y)/(g1^9*g2^9*g3*g4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46978 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}^{2}$ + ${ }M_{3}^{2}$ | 0.7536 | 0.9338 | 0.807 | [M:[0.693, 0.8465, 1.0, 0.8465, 0.8465, 0.8465, 1.1535], q:[0.6535, 0.6535], qb:[0.5, 0.5], phi:[0.4233]] | t^2.079 + 4*t^2.54 + t^3. + t^3.46 + t^4.158 + 3*t^4.27 + 4*t^4.619 + 4*t^4.73 + 11*t^5.079 + 3*t^5.191 + t^5.54 - 3*t^6. - t^4.27/y - t^4.27*y | detail | |
46868 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}^{2}$ + ${ }M_{4}M_{5}$ | 0.737 | 0.9112 | 0.8089 | [M:[0.8973, 0.7712, 0.8739, 1.0, 1.0, 0.7712, 1.1144], q:[0.5513, 0.5513], qb:[0.6775, 0.4487], phi:[0.4428]] | 2*t^2.314 + t^2.622 + t^2.692 + 2*t^3. + t^3.343 + t^4.02 + 2*t^4.328 + 3*t^4.627 + 3*t^4.636 + t^4.707 + 2*t^4.935 + 2*t^5.006 + 2*t^5.015 + t^5.243 + 4*t^5.314 + t^5.384 + t^5.393 + 2*t^5.657 + t^5.965 - 3*t^6. - t^4.328/y - t^4.328*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46133 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ | 0.8092 | 1.0197 | 0.7935 | [M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] | 7*t^2.255 + 28*t^4.511 + 10*t^4.872 - 16*t^6. - t^4.128/y - t^4.128*y | detail |