Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45955 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ | 0.791 | 0.9858 | 0.8024 | [X:[], M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.6314, 0.604], qb:[0.604, 0.6314], phi:[0.3823]] | [X:[], M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [0, 0, -4, -4], [0, -4, 0, -4], [-4, 0, 0, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_1$, $ M_2$, $ M_4$, $ M_3$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ M_5^2$, $ M_4M_5$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_1M_5$, $ M_2M_5$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_1M_4$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ \phi_1^4$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$ | . | -8 | t^2.21 + 5*t^2.29 + t^3.62 + t^4.42 + 5*t^4.51 + 15*t^4.59 + 3*t^4.77 + 4*t^4.85 + 3*t^4.94 + t^5.84 + t^5.92 - 8*t^6. - 4*t^6.08 + t^6.63 + 5*t^6.72 + 15*t^6.8 + 35*t^6.88 + 3*t^6.98 + 15*t^7.06 + 16*t^7.15 + 11*t^7.23 + t^7.25 - t^7.41 + t^8.05 + t^8.13 - 10*t^8.21 - 40*t^8.29 - 17*t^8.38 + 3*t^8.39 - 3*t^8.48 - 8*t^8.56 - 7*t^8.64 + t^8.85 + 5*t^8.93 - t^4.15/y - t^6.36/y - (5*t^6.44)/y + (5*t^7.51)/y + (10*t^7.59)/y + (5*t^7.85)/y + t^7.94/y - t^8.57/y - (5*t^8.65)/y - (15*t^8.73)/y + t^8.84/y + (5*t^8.92)/y - t^4.15*y - t^6.36*y - 5*t^6.44*y + 5*t^7.51*y + 10*t^7.59*y + 5*t^7.85*y + t^7.94*y - t^8.57*y - 5*t^8.65*y - 15*t^8.73*y + t^8.84*y + 5*t^8.92*y | t^2.21/(g1^4*g4^4) + t^2.29/(g1^4*g2^4) + t^2.29/(g1^4*g3^4) + t^2.29/(g2^4*g4^4) + t^2.29/(g3^4*g4^4) + t^2.29/(g1^2*g2^2*g3^2*g4^2) + g2^4*g3^4*t^3.62 + t^4.42/(g1^8*g4^8) + t^4.51/(g1^4*g2^4*g4^8) + t^4.51/(g1^4*g3^4*g4^8) + t^4.51/(g1^6*g2^2*g3^2*g4^6) + t^4.51/(g1^8*g2^4*g4^4) + t^4.51/(g1^8*g3^4*g4^4) + t^4.59/(g1^8*g2^8) + t^4.59/(g1^8*g3^8) + t^4.59/(g1^8*g2^4*g3^4) + t^4.59/(g2^8*g4^8) + t^4.59/(g3^8*g4^8) + t^4.59/(g2^4*g3^4*g4^8) + t^4.59/(g1^2*g2^2*g3^6*g4^6) + t^4.59/(g1^2*g2^6*g3^2*g4^6) + t^4.59/(g1^4*g2^8*g4^4) + t^4.59/(g1^4*g3^8*g4^4) + (3*t^4.59)/(g1^4*g2^4*g3^4*g4^4) + t^4.59/(g1^6*g2^2*g3^6*g4^2) + t^4.59/(g1^6*g2^6*g3^2*g4^2) + (g2^7*t^4.77)/(g1*g3*g4) + (g2^3*g3^3*t^4.77)/(g1*g4) + (g3^7*t^4.77)/(g1*g2*g4) + (g1^3*g2^3*t^4.85)/(g3*g4) + (g1^3*g3^3*t^4.85)/(g2*g4) + (g2^3*g4^3*t^4.85)/(g1*g3) + (g3^3*g4^3*t^4.85)/(g1*g2) + (g1^7*t^4.94)/(g2*g3*g4) + (g1^3*g4^3*t^4.94)/(g2*g3) + (g4^7*t^4.94)/(g1*g2*g3) + (g2^4*g3^4*t^5.84)/(g1^4*g4^4) + (g2^2*g3^2*t^5.92)/(g1^2*g4^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g1^4*t^6.08)/g2^4 - (g1^4*t^6.08)/g3^4 - (g4^4*t^6.08)/g2^4 - (g4^4*t^6.08)/g3^4 + t^6.63/(g1^12*g4^12) + t^6.72/(g1^8*g2^4*g4^12) + t^6.72/(g1^8*g3^4*g4^12) + t^6.72/(g1^10*g2^2*g3^2*g4^10) + t^6.72/(g1^12*g2^4*g4^8) + t^6.72/(g1^12*g3^4*g4^8) + t^6.8/(g1^4*g2^8*g4^12) + t^6.8/(g1^4*g3^8*g4^12) + t^6.8/(g1^4*g2^4*g3^4*g4^12) + t^6.8/(g1^6*g2^2*g3^6*g4^10) + t^6.8/(g1^6*g2^6*g3^2*g4^10) + t^6.8/(g1^8*g2^8*g4^8) + t^6.8/(g1^8*g3^8*g4^8) + (3*t^6.8)/(g1^8*g2^4*g3^4*g4^8) + t^6.8/(g1^10*g2^2*g3^6*g4^6) + t^6.8/(g1^10*g2^6*g3^2*g4^6) + t^6.8/(g1^12*g2^8*g4^4) + t^6.8/(g1^12*g3^8*g4^4) + t^6.8/(g1^12*g2^4*g3^4*g4^4) + t^6.88/(g1^12*g2^12) + t^6.88/(g1^12*g3^12) + t^6.88/(g1^12*g2^4*g3^8) + t^6.88/(g1^12*g2^8*g3^4) + t^6.88/(g2^12*g4^12) + t^6.88/(g3^12*g4^12) + t^6.88/(g2^4*g3^8*g4^12) + t^6.88/(g2^8*g3^4*g4^12) + t^6.88/(g1^2*g2^2*g3^10*g4^10) + t^6.88/(g1^2*g2^6*g3^6*g4^10) + t^6.88/(g1^2*g2^10*g3^2*g4^10) + t^6.88/(g1^4*g2^12*g4^8) + t^6.88/(g1^4*g3^12*g4^8) + (3*t^6.88)/(g1^4*g2^4*g3^8*g4^8) + (3*t^6.88)/(g1^4*g2^8*g3^4*g4^8) + t^6.88/(g1^6*g2^2*g3^10*g4^6) + (3*t^6.88)/(g1^6*g2^6*g3^6*g4^6) + t^6.88/(g1^6*g2^10*g3^2*g4^6) + t^6.88/(g1^8*g2^12*g4^4) + t^6.88/(g1^8*g3^12*g4^4) + (3*t^6.88)/(g1^8*g2^4*g3^8*g4^4) + (3*t^6.88)/(g1^8*g2^8*g3^4*g4^4) + t^6.88/(g1^10*g2^2*g3^10*g4^2) + t^6.88/(g1^10*g2^6*g3^6*g4^2) + t^6.88/(g1^10*g2^10*g3^2*g4^2) + (g2^7*t^6.98)/(g1^5*g3*g4^5) + (g2^3*g3^3*t^6.98)/(g1^5*g4^5) + (g3^7*t^6.98)/(g1^5*g2*g4^5) + (g2^7*t^7.06)/(g1*g3^5*g4^5) + (2*g2^3*t^7.06)/(g1*g3*g4^5) + (2*g3^3*t^7.06)/(g1*g2*g4^5) + (g3^7*t^7.06)/(g1*g2^5*g4^5) + (g2^5*t^7.06)/(g1^3*g3^3*g4^3) + (g2*g3*t^7.06)/(g1^3*g4^3) + (g3^5*t^7.06)/(g1^3*g2^3*g4^3) + (g2^7*t^7.06)/(g1^5*g3^5*g4) + (2*g2^3*t^7.06)/(g1^5*g3*g4) + (2*g3^3*t^7.06)/(g1^5*g2*g4) + (g3^7*t^7.06)/(g1^5*g2^5*g4) + (g1^3*g2^3*t^7.15)/(g3^5*g4^5) + (2*g1^3*t^7.15)/(g2*g3*g4^5) + (g1^3*g3^3*t^7.15)/(g2^5*g4^5) + (g1*g2*t^7.15)/(g3^3*g4^3) + (g1*g3*t^7.15)/(g2^3*g4^3) + (g2^3*t^7.15)/(g1*g3^5*g4) + (2*t^7.15)/(g1*g2*g3*g4) + (g3^3*t^7.15)/(g1*g2^5*g4) + (g2*g4*t^7.15)/(g1^3*g3^3) + (g3*g4*t^7.15)/(g1^3*g2^3) + (g2^3*g4^3*t^7.15)/(g1^5*g3^5) + (2*g4^3*t^7.15)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.15)/(g1^5*g2^5) + (g1^7*t^7.23)/(g2*g3^5*g4^5) + (g1^7*t^7.23)/(g2^5*g3*g4^5) + (g1^5*t^7.23)/(g2^3*g3^3*g4^3) + (g1^3*t^7.23)/(g2*g3^5*g4) + (g1^3*t^7.23)/(g2^5*g3*g4) + (g1*g4*t^7.23)/(g2^3*g3^3) + (g4^3*t^7.23)/(g1*g2*g3^5) + (g4^3*t^7.23)/(g1*g2^5*g3) + (g4^5*t^7.23)/(g1^3*g2^3*g3^3) + (g4^7*t^7.23)/(g1^5*g2*g3^5) + (g4^7*t^7.23)/(g1^5*g2^5*g3) + g2^8*g3^8*t^7.25 - g1^4*g2^4*g3^4*g4^4*t^7.41 + (g2^4*g3^4*t^8.05)/(g1^8*g4^8) + (g2^2*g3^2*t^8.13)/(g1^6*g4^6) - t^8.21/g1^8 - t^8.21/g4^8 - (4*t^8.21)/(g1^4*g4^4) - (2*g2^4*t^8.21)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.21)/(g1^4*g2^4*g4^4) - (6*t^8.29)/(g1^4*g2^4) - (g2^4*t^8.29)/(g1^4*g3^8) - (6*t^8.29)/(g1^4*g3^4) - (g3^4*t^8.29)/(g1^4*g2^8) - (g1^4*t^8.29)/(g2^4*g4^8) - (g1^4*t^8.29)/(g3^4*g4^8) - (g1^2*t^8.29)/(g2^2*g3^2*g4^6) - (6*t^8.29)/(g2^4*g4^4) - (g2^4*t^8.29)/(g3^8*g4^4) - (6*t^8.29)/(g3^4*g4^4) - (g3^4*t^8.29)/(g2^8*g4^4) - (g2^2*t^8.29)/(g1^2*g3^6*g4^2) - (4*t^8.29)/(g1^2*g2^2*g3^2*g4^2) - (g3^2*t^8.29)/(g1^2*g2^6*g4^2) - (g4^2*t^8.29)/(g1^6*g2^2*g3^2) - (g4^4*t^8.29)/(g1^8*g2^4) - (g4^4*t^8.29)/(g1^8*g3^4) - t^8.38/g2^8 - t^8.38/g3^8 - (3*t^8.38)/(g2^4*g3^4) - (g1^4*t^8.38)/(g2^8*g4^4) - (g1^4*t^8.38)/(g3^8*g4^4) - (2*g1^4*t^8.38)/(g2^4*g3^4*g4^4) - (g1^2*t^8.38)/(g2^2*g3^6*g4^2) - (g1^2*t^8.38)/(g2^6*g3^2*g4^2) - (g4^2*t^8.38)/(g1^2*g2^2*g3^6) - (g4^2*t^8.38)/(g1^2*g2^6*g3^2) - (g4^4*t^8.38)/(g1^4*g2^8) - (g4^4*t^8.38)/(g1^4*g3^8) - (2*g4^4*t^8.38)/(g1^4*g2^4*g3^4) + (g2^11*g3^3*t^8.39)/(g1*g4) + (g2^7*g3^7*t^8.39)/(g1*g4) + (g2^3*g3^11*t^8.39)/(g1*g4) - g1*g2^9*g3*g4*t^8.48 - g1*g2^5*g3^5*g4*t^8.48 - g1*g2*g3^9*g4*t^8.48 - g1^5*g2^5*g3*g4*t^8.56 - g1^5*g2*g3^5*g4*t^8.56 - (g1^3*g2^7*g4^3*t^8.56)/g3 - 2*g1^3*g2^3*g3^3*g4^3*t^8.56 - (g1^3*g3^7*g4^3*t^8.56)/g2 - g1*g2^5*g3*g4^5*t^8.56 - g1*g2*g3^5*g4^5*t^8.56 - g1^9*g2*g3*g4*t^8.64 - (g1^7*g2^3*g4^3*t^8.64)/g3 - (g1^7*g3^3*g4^3*t^8.64)/g2 - g1^5*g2*g3*g4^5*t^8.64 - (g1^3*g2^3*g4^7*t^8.64)/g3 - (g1^3*g3^3*g4^7*t^8.64)/g2 - g1*g2*g3*g4^9*t^8.64 + t^8.85/(g1^16*g4^16) + t^8.93/(g1^12*g2^4*g4^16) + t^8.93/(g1^12*g3^4*g4^16) + t^8.93/(g1^14*g2^2*g3^2*g4^14) + t^8.93/(g1^16*g2^4*g4^12) + t^8.93/(g1^16*g3^4*g4^12) - t^4.15/(g1*g2*g3*g4*y) - t^6.36/(g1^5*g2*g3*g4^5*y) - t^6.44/(g1*g2*g3^5*g4^5*y) - t^6.44/(g1*g2^5*g3*g4^5*y) - t^6.44/(g1^3*g2^3*g3^3*g4^3*y) - t^6.44/(g1^5*g2*g3^5*g4*y) - t^6.44/(g1^5*g2^5*g3*g4*y) + t^7.51/(g1^4*g2^4*g4^8*y) + t^7.51/(g1^4*g3^4*g4^8*y) + t^7.51/(g1^6*g2^2*g3^2*g4^6*y) + t^7.51/(g1^8*g2^4*g4^4*y) + t^7.51/(g1^8*g3^4*g4^4*y) + t^7.59/(g1^8*g2^4*g3^4*y) + t^7.59/(g2^4*g3^4*g4^8*y) + t^7.59/(g1^2*g2^2*g3^6*g4^6*y) + t^7.59/(g1^2*g2^6*g3^2*g4^6*y) + t^7.59/(g1^4*g2^8*g4^4*y) + t^7.59/(g1^4*g3^8*g4^4*y) + (2*t^7.59)/(g1^4*g2^4*g3^4*g4^4*y) + t^7.59/(g1^6*g2^2*g3^6*g4^2*y) + t^7.59/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.85)/(g3*g4*y) + (g1^3*g3^3*t^7.85)/(g2*g4*y) + (g1*g2*g3*g4*t^7.85)/y + (g2^3*g4^3*t^7.85)/(g1*g3*y) + (g3^3*g4^3*t^7.85)/(g1*g2*y) + (g1^3*g4^3*t^7.94)/(g2*g3*y) - t^8.57/(g1^9*g2*g3*g4^9*y) - t^8.65/(g1^5*g2*g3^5*g4^9*y) - t^8.65/(g1^5*g2^5*g3*g4^9*y) - t^8.65/(g1^7*g2^3*g3^3*g4^7*y) - t^8.65/(g1^9*g2*g3^5*g4^5*y) - t^8.65/(g1^9*g2^5*g3*g4^5*y) - t^8.73/(g1*g2*g3^9*g4^9*y) - t^8.73/(g1*g2^5*g3^5*g4^9*y) - t^8.73/(g1*g2^9*g3*g4^9*y) - t^8.73/(g1^3*g2^3*g3^7*g4^7*y) - t^8.73/(g1^3*g2^7*g3^3*g4^7*y) - t^8.73/(g1^5*g2*g3^9*g4^5*y) - (3*t^8.73)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.73/(g1^5*g2^9*g3*g4^5*y) - t^8.73/(g1^7*g2^3*g3^7*g4^3*y) - t^8.73/(g1^7*g2^7*g3^3*g4^3*y) - t^8.73/(g1^9*g2*g3^9*g4*y) - t^8.73/(g1^9*g2^5*g3^5*g4*y) - t^8.73/(g1^9*g2^9*g3*g4*y) + (g2^4*g3^4*t^8.84)/(g1^4*g4^4*y) + (g2^4*t^8.92)/(g1^4*y) + (g3^4*t^8.92)/(g1^4*y) + (g2^4*t^8.92)/(g4^4*y) + (g3^4*t^8.92)/(g4^4*y) + (g2^2*g3^2*t^8.92)/(g1^2*g4^2*y) - (t^4.15*y)/(g1*g2*g3*g4) - (t^6.36*y)/(g1^5*g2*g3*g4^5) - (t^6.44*y)/(g1*g2*g3^5*g4^5) - (t^6.44*y)/(g1*g2^5*g3*g4^5) - (t^6.44*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.44*y)/(g1^5*g2*g3^5*g4) - (t^6.44*y)/(g1^5*g2^5*g3*g4) + (t^7.51*y)/(g1^4*g2^4*g4^8) + (t^7.51*y)/(g1^4*g3^4*g4^8) + (t^7.51*y)/(g1^6*g2^2*g3^2*g4^6) + (t^7.51*y)/(g1^8*g2^4*g4^4) + (t^7.51*y)/(g1^8*g3^4*g4^4) + (t^7.59*y)/(g1^8*g2^4*g3^4) + (t^7.59*y)/(g2^4*g3^4*g4^8) + (t^7.59*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.59*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.59*y)/(g1^4*g2^8*g4^4) + (t^7.59*y)/(g1^4*g3^8*g4^4) + (2*t^7.59*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.59*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.59*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.85*y)/(g3*g4) + (g1^3*g3^3*t^7.85*y)/(g2*g4) + g1*g2*g3*g4*t^7.85*y + (g2^3*g4^3*t^7.85*y)/(g1*g3) + (g3^3*g4^3*t^7.85*y)/(g1*g2) + (g1^3*g4^3*t^7.94*y)/(g2*g3) - (t^8.57*y)/(g1^9*g2*g3*g4^9) - (t^8.65*y)/(g1^5*g2*g3^5*g4^9) - (t^8.65*y)/(g1^5*g2^5*g3*g4^9) - (t^8.65*y)/(g1^7*g2^3*g3^3*g4^7) - (t^8.65*y)/(g1^9*g2*g3^5*g4^5) - (t^8.65*y)/(g1^9*g2^5*g3*g4^5) - (t^8.73*y)/(g1*g2*g3^9*g4^9) - (t^8.73*y)/(g1*g2^5*g3^5*g4^9) - (t^8.73*y)/(g1*g2^9*g3*g4^9) - (t^8.73*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.73*y)/(g1^3*g2^7*g3^3*g4^7) - (t^8.73*y)/(g1^5*g2*g3^9*g4^5) - (3*t^8.73*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.73*y)/(g1^5*g2^9*g3*g4^5) - (t^8.73*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.73*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.73*y)/(g1^9*g2*g3^9*g4) - (t^8.73*y)/(g1^9*g2^5*g3^5*g4) - (t^8.73*y)/(g1^9*g2^9*g3*g4) + (g2^4*g3^4*t^8.84*y)/(g1^4*g4^4) + (g2^4*t^8.92*y)/g1^4 + (g3^4*t^8.92*y)/g1^4 + (g2^4*t^8.92*y)/g4^4 + (g3^4*t^8.92*y)/g4^4 + (g2^2*g3^2*t^8.92*y)/(g1^2*g4^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46325 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ | 0.7103 | 0.8687 | 0.8177 | [X:[], M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.4663, 0.6011], qb:[0.6011, 0.4663], phi:[0.4663]] | 5*t^2.8 + t^3.2 + t^3.61 + 3*t^4.2 + 4*t^4.6 + 3*t^5.01 + 11*t^5.6 - 3*t^6. - t^4.4/y - t^4.4*y | detail | |
46324 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ | 0.7466 | 0.9183 | 0.813 | [X:[], M:[0.8355, 0.8355, 0.8355, 0.8355, 1.0], q:[0.5, 0.6645], qb:[0.6645, 0.5], phi:[0.4177]] | 5*t^2.51 + t^3. + t^3.99 + 3*t^4.25 + 4*t^4.75 + 15*t^5.01 + 3*t^5.24 + t^5.51 - 7*t^6. - t^4.25/y - t^4.25*y | detail | |
46133 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ | 0.8092 | 1.0197 | 0.7935 | [X:[], M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] | 7*t^2.26 + 28*t^4.51 + 10*t^4.87 - 16*t^6. - t^4.13/y - t^4.13*y | detail | |
46120 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_1$ | 0.7904 | 0.9838 | 0.8034 | [X:[], M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] | 6*t^2.29 + t^3.71 + 21*t^4.57 + 10*t^4.86 - 10*t^6. - t^4.14/y - t^4.14*y | detail | {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45934 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ | 0.7722 | 0.9495 | 0.8132 | [X:[], M:[0.7745, 0.7745, 0.7745, 0.7745], q:[0.6127, 0.6127], qb:[0.6127, 0.6127], phi:[0.3873]] | 5*t^2.32 + 2*t^3.68 + 15*t^4.65 + 10*t^4.84 - 6*t^6. - t^4.16/y - t^4.16*y | detail |