Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
539 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ 0.7904 0.9838 0.8034 [M:[0.7619, 1.2381, 0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] [M:[[-4, -4, 0, 0], [2, 2, 2, 2], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0], [-4, 0, 0, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4 {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 26/21, M3: 16/21, M4: 16/21, M5: 16/21, M6: 16/21, M7: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{7}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ ${}M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{7}$ -10 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. + 56*t^6.857 + 45*t^7.143 - 65*t^8.286 - 15*t^8.571 - t^4.143/y - (6*t^6.429)/y + (15*t^7.571)/y + (6*t^7.857)/y - (21*t^8.714)/y - t^4.143*y - 6*t^6.429*y + 15*t^7.571*y + 6*t^7.857*y - 21*t^8.714*y t^2.286/(g1^4*g2^4) + t^2.286/(g1^4*g3^4) + t^2.286/(g2^4*g3^4) + t^2.286/(g1^4*g4^4) + t^2.286/(g2^4*g4^4) + t^2.286/(g3^4*g4^4) + g1^2*g2^2*g3^2*g4^2*t^3.714 + t^4.571/(g1^8*g2^8) + t^4.571/(g1^8*g3^8) + t^4.571/(g2^8*g3^8) + t^4.571/(g1^4*g2^4*g3^8) + t^4.571/(g1^4*g2^8*g3^4) + t^4.571/(g1^8*g2^4*g3^4) + t^4.571/(g1^8*g4^8) + t^4.571/(g2^8*g4^8) + t^4.571/(g1^4*g2^4*g4^8) + t^4.571/(g3^8*g4^8) + t^4.571/(g1^4*g3^4*g4^8) + t^4.571/(g2^4*g3^4*g4^8) + t^4.571/(g1^4*g2^8*g4^4) + t^4.571/(g1^8*g2^4*g4^4) + t^4.571/(g1^4*g3^8*g4^4) + t^4.571/(g2^4*g3^8*g4^4) + t^4.571/(g1^8*g3^4*g4^4) + t^4.571/(g2^8*g3^4*g4^4) + (3*t^4.571)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*t^4.857)/(g2*g3*g4) + (g1^3*g2^3*t^4.857)/(g3*g4) + (g2^7*t^4.857)/(g1*g3*g4) + (g1^3*g3^3*t^4.857)/(g2*g4) + (g2^3*g3^3*t^4.857)/(g1*g4) + (g3^7*t^4.857)/(g1*g2*g4) + (g1^3*g4^3*t^4.857)/(g2*g3) + (g2^3*g4^3*t^4.857)/(g1*g3) + (g3^3*g4^3*t^4.857)/(g1*g2) + (g4^7*t^4.857)/(g1*g2*g3) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 + (g1^2*g2^2*t^6.)/(g3^2*g4^2) + (g1^2*g3^2*t^6.)/(g2^2*g4^2) + (g2^2*g3^2*t^6.)/(g1^2*g4^2) + (g1^2*g4^2*t^6.)/(g2^2*g3^2) + (g2^2*g4^2*t^6.)/(g1^2*g3^2) + (g3^2*g4^2*t^6.)/(g1^2*g2^2) - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 + t^6.857/(g1^12*g2^12) + t^6.857/(g1^12*g3^12) + t^6.857/(g2^12*g3^12) + t^6.857/(g1^4*g2^8*g3^12) + t^6.857/(g1^8*g2^4*g3^12) + t^6.857/(g1^4*g2^12*g3^8) + t^6.857/(g1^8*g2^8*g3^8) + t^6.857/(g1^12*g2^4*g3^8) + t^6.857/(g1^8*g2^12*g3^4) + t^6.857/(g1^12*g2^8*g3^4) + t^6.857/(g1^12*g4^12) + t^6.857/(g2^12*g4^12) + t^6.857/(g1^4*g2^8*g4^12) + t^6.857/(g1^8*g2^4*g4^12) + t^6.857/(g3^12*g4^12) + t^6.857/(g1^4*g3^8*g4^12) + t^6.857/(g2^4*g3^8*g4^12) + t^6.857/(g1^8*g3^4*g4^12) + t^6.857/(g2^8*g3^4*g4^12) + t^6.857/(g1^4*g2^4*g3^4*g4^12) + t^6.857/(g1^4*g2^12*g4^8) + t^6.857/(g1^8*g2^8*g4^8) + t^6.857/(g1^12*g2^4*g4^8) + t^6.857/(g1^4*g3^12*g4^8) + t^6.857/(g2^4*g3^12*g4^8) + t^6.857/(g1^8*g3^8*g4^8) + t^6.857/(g2^8*g3^8*g4^8) + (3*t^6.857)/(g1^4*g2^4*g3^8*g4^8) + t^6.857/(g1^12*g3^4*g4^8) + t^6.857/(g2^12*g3^4*g4^8) + (3*t^6.857)/(g1^4*g2^8*g3^4*g4^8) + (3*t^6.857)/(g1^8*g2^4*g3^4*g4^8) + t^6.857/(g1^8*g2^12*g4^4) + t^6.857/(g1^12*g2^8*g4^4) + t^6.857/(g1^8*g3^12*g4^4) + t^6.857/(g2^8*g3^12*g4^4) + t^6.857/(g1^4*g2^4*g3^12*g4^4) + t^6.857/(g1^12*g3^8*g4^4) + t^6.857/(g2^12*g3^8*g4^4) + (3*t^6.857)/(g1^4*g2^8*g3^8*g4^4) + (3*t^6.857)/(g1^8*g2^4*g3^8*g4^4) + t^6.857/(g1^4*g2^12*g3^4*g4^4) + (3*t^6.857)/(g1^8*g2^8*g3^4*g4^4) + t^6.857/(g1^12*g2^4*g3^4*g4^4) + (g1^7*t^7.143)/(g2*g3^5*g4^5) + (g1^3*g2^3*t^7.143)/(g3^5*g4^5) + (g2^7*t^7.143)/(g1*g3^5*g4^5) + (g1^7*t^7.143)/(g2^5*g3*g4^5) + (2*g1^3*t^7.143)/(g2*g3*g4^5) + (2*g2^3*t^7.143)/(g1*g3*g4^5) + (g2^7*t^7.143)/(g1^5*g3*g4^5) + (g1^3*g3^3*t^7.143)/(g2^5*g4^5) + (2*g3^3*t^7.143)/(g1*g2*g4^5) + (g2^3*g3^3*t^7.143)/(g1^5*g4^5) + (g3^7*t^7.143)/(g1*g2^5*g4^5) + (g3^7*t^7.143)/(g1^5*g2*g4^5) + (g1^7*t^7.143)/(g2^5*g3^5*g4) + (2*g1^3*t^7.143)/(g2*g3^5*g4) + (2*g2^3*t^7.143)/(g1*g3^5*g4) + (g2^7*t^7.143)/(g1^5*g3^5*g4) + (2*g1^3*t^7.143)/(g2^5*g3*g4) + (3*t^7.143)/(g1*g2*g3*g4) + (2*g2^3*t^7.143)/(g1^5*g3*g4) + (2*g3^3*t^7.143)/(g1*g2^5*g4) + (2*g3^3*t^7.143)/(g1^5*g2*g4) + (g3^7*t^7.143)/(g1^5*g2^5*g4) + (g1^3*g4^3*t^7.143)/(g2^5*g3^5) + (2*g4^3*t^7.143)/(g1*g2*g3^5) + (g2^3*g4^3*t^7.143)/(g1^5*g3^5) + (2*g4^3*t^7.143)/(g1*g2^5*g3) + (2*g4^3*t^7.143)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.143)/(g1^5*g2^5) + (g4^7*t^7.143)/(g1*g2^5*g3^5) + (g4^7*t^7.143)/(g1^5*g2*g3^5) + (g4^7*t^7.143)/(g1^5*g2^5*g3) - (2*t^8.286)/g1^8 - (2*t^8.286)/g2^8 - (7*t^8.286)/(g1^4*g2^4) - (2*t^8.286)/g3^8 - (g1^4*t^8.286)/(g2^4*g3^8) - (g2^4*t^8.286)/(g1^4*g3^8) - (7*t^8.286)/(g1^4*g3^4) - (g1^4*t^8.286)/(g2^8*g3^4) - (7*t^8.286)/(g2^4*g3^4) - (g2^4*t^8.286)/(g1^8*g3^4) - (g3^4*t^8.286)/(g1^4*g2^8) - (g3^4*t^8.286)/(g1^8*g2^4) - (2*t^8.286)/g4^8 - (g1^4*t^8.286)/(g2^4*g4^8) - (g2^4*t^8.286)/(g1^4*g4^8) - (g1^4*t^8.286)/(g3^4*g4^8) - (g2^4*t^8.286)/(g3^4*g4^8) - (g3^4*t^8.286)/(g1^4*g4^8) - (g3^4*t^8.286)/(g2^4*g4^8) + (g1^2*g2^2*t^8.286)/(g3^6*g4^6) + (g1^2*t^8.286)/(g2^2*g3^2*g4^6) + (g2^2*t^8.286)/(g1^2*g3^2*g4^6) + (g1^2*g3^2*t^8.286)/(g2^6*g4^6) + (g3^2*t^8.286)/(g1^2*g2^2*g4^6) + (g2^2*g3^2*t^8.286)/(g1^6*g4^6) - (7*t^8.286)/(g1^4*g4^4) - (g1^4*t^8.286)/(g2^8*g4^4) - (7*t^8.286)/(g2^4*g4^4) - (g2^4*t^8.286)/(g1^8*g4^4) - (g1^4*t^8.286)/(g3^8*g4^4) - (g2^4*t^8.286)/(g3^8*g4^4) - (7*t^8.286)/(g3^4*g4^4) - (3*g1^4*t^8.286)/(g2^4*g3^4*g4^4) - (3*g2^4*t^8.286)/(g1^4*g3^4*g4^4) - (g3^4*t^8.286)/(g1^8*g4^4) - (g3^4*t^8.286)/(g2^8*g4^4) - (3*g3^4*t^8.286)/(g1^4*g2^4*g4^4) + (g1^2*t^8.286)/(g2^2*g3^6*g4^2) + (g2^2*t^8.286)/(g1^2*g3^6*g4^2) + (g1^2*t^8.286)/(g2^6*g3^2*g4^2) + (3*t^8.286)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*t^8.286)/(g1^6*g3^2*g4^2) + (g3^2*t^8.286)/(g1^2*g2^6*g4^2) + (g3^2*t^8.286)/(g1^6*g2^2*g4^2) + (g1^2*g4^2*t^8.286)/(g2^6*g3^6) + (g4^2*t^8.286)/(g1^2*g2^2*g3^6) + (g2^2*g4^2*t^8.286)/(g1^6*g3^6) + (g4^2*t^8.286)/(g1^2*g2^6*g3^2) + (g4^2*t^8.286)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.286)/(g1^6*g2^6) - (g4^4*t^8.286)/(g1^4*g2^8) - (g4^4*t^8.286)/(g1^8*g2^4) - (g4^4*t^8.286)/(g1^4*g3^8) - (g4^4*t^8.286)/(g2^4*g3^8) - (g4^4*t^8.286)/(g1^8*g3^4) - (g4^4*t^8.286)/(g2^8*g3^4) - (3*g4^4*t^8.286)/(g1^4*g2^4*g3^4) - (g1^7*g2^3*g3^3*t^8.571)/g4 - (g1^3*g2^7*g3^3*t^8.571)/g4 - (g1^3*g2^3*g3^7*t^8.571)/g4 - (g1^7*g2^3*g4^3*t^8.571)/g3 - (g1^3*g2^7*g4^3*t^8.571)/g3 - (g1^7*g3^3*g4^3*t^8.571)/g2 - 3*g1^3*g2^3*g3^3*g4^3*t^8.571 - (g2^7*g3^3*g4^3*t^8.571)/g1 - (g1^3*g3^7*g4^3*t^8.571)/g2 - (g2^3*g3^7*g4^3*t^8.571)/g1 - (g1^3*g2^3*g4^7*t^8.571)/g3 - (g1^3*g3^3*g4^7*t^8.571)/g2 - (g2^3*g3^3*g4^7*t^8.571)/g1 - t^4.143/(g1*g2*g3*g4*y) - t^6.429/(g1*g2*g3^5*g4^5*y) - t^6.429/(g1*g2^5*g3*g4^5*y) - t^6.429/(g1^5*g2*g3*g4^5*y) - t^6.429/(g1*g2^5*g3^5*g4*y) - t^6.429/(g1^5*g2*g3^5*g4*y) - t^6.429/(g1^5*g2^5*g3*g4*y) + t^7.571/(g1^4*g2^4*g3^8*y) + t^7.571/(g1^4*g2^8*g3^4*y) + t^7.571/(g1^8*g2^4*g3^4*y) + t^7.571/(g1^4*g2^4*g4^8*y) + t^7.571/(g1^4*g3^4*g4^8*y) + t^7.571/(g2^4*g3^4*g4^8*y) + t^7.571/(g1^4*g2^8*g4^4*y) + t^7.571/(g1^8*g2^4*g4^4*y) + t^7.571/(g1^4*g3^8*g4^4*y) + t^7.571/(g2^4*g3^8*g4^4*y) + t^7.571/(g1^8*g3^4*g4^4*y) + t^7.571/(g2^8*g3^4*g4^4*y) + (3*t^7.571)/(g1^4*g2^4*g3^4*g4^4*y) + (g1^3*g2^3*t^7.857)/(g3*g4*y) + (g1^3*g3^3*t^7.857)/(g2*g4*y) + (g2^3*g3^3*t^7.857)/(g1*g4*y) + (g1^3*g4^3*t^7.857)/(g2*g3*y) + (g2^3*g4^3*t^7.857)/(g1*g3*y) + (g3^3*g4^3*t^7.857)/(g1*g2*y) - t^8.714/(g1*g2*g3^9*g4^9*y) - t^8.714/(g1*g2^5*g3^5*g4^9*y) - t^8.714/(g1^5*g2*g3^5*g4^9*y) - t^8.714/(g1*g2^9*g3*g4^9*y) - t^8.714/(g1^5*g2^5*g3*g4^9*y) - t^8.714/(g1^9*g2*g3*g4^9*y) - t^8.714/(g1*g2^5*g3^9*g4^5*y) - t^8.714/(g1^5*g2*g3^9*g4^5*y) - t^8.714/(g1*g2^9*g3^5*g4^5*y) - (3*t^8.714)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.714/(g1^9*g2*g3^5*g4^5*y) - t^8.714/(g1^5*g2^9*g3*g4^5*y) - t^8.714/(g1^9*g2^5*g3*g4^5*y) - t^8.714/(g1*g2^9*g3^9*g4*y) - t^8.714/(g1^5*g2^5*g3^9*g4*y) - t^8.714/(g1^9*g2*g3^9*g4*y) - t^8.714/(g1^5*g2^9*g3^5*g4*y) - t^8.714/(g1^9*g2^5*g3^5*g4*y) - t^8.714/(g1^9*g2^9*g3*g4*y) - (t^4.143*y)/(g1*g2*g3*g4) - (t^6.429*y)/(g1*g2*g3^5*g4^5) - (t^6.429*y)/(g1*g2^5*g3*g4^5) - (t^6.429*y)/(g1^5*g2*g3*g4^5) - (t^6.429*y)/(g1*g2^5*g3^5*g4) - (t^6.429*y)/(g1^5*g2*g3^5*g4) - (t^6.429*y)/(g1^5*g2^5*g3*g4) + (t^7.571*y)/(g1^4*g2^4*g3^8) + (t^7.571*y)/(g1^4*g2^8*g3^4) + (t^7.571*y)/(g1^8*g2^4*g3^4) + (t^7.571*y)/(g1^4*g2^4*g4^8) + (t^7.571*y)/(g1^4*g3^4*g4^8) + (t^7.571*y)/(g2^4*g3^4*g4^8) + (t^7.571*y)/(g1^4*g2^8*g4^4) + (t^7.571*y)/(g1^8*g2^4*g4^4) + (t^7.571*y)/(g1^4*g3^8*g4^4) + (t^7.571*y)/(g2^4*g3^8*g4^4) + (t^7.571*y)/(g1^8*g3^4*g4^4) + (t^7.571*y)/(g2^8*g3^4*g4^4) + (3*t^7.571*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g2^3*t^7.857*y)/(g3*g4) + (g1^3*g3^3*t^7.857*y)/(g2*g4) + (g2^3*g3^3*t^7.857*y)/(g1*g4) + (g1^3*g4^3*t^7.857*y)/(g2*g3) + (g2^3*g4^3*t^7.857*y)/(g1*g3) + (g3^3*g4^3*t^7.857*y)/(g1*g2) - (t^8.714*y)/(g1*g2*g3^9*g4^9) - (t^8.714*y)/(g1*g2^5*g3^5*g4^9) - (t^8.714*y)/(g1^5*g2*g3^5*g4^9) - (t^8.714*y)/(g1*g2^9*g3*g4^9) - (t^8.714*y)/(g1^5*g2^5*g3*g4^9) - (t^8.714*y)/(g1^9*g2*g3*g4^9) - (t^8.714*y)/(g1*g2^5*g3^9*g4^5) - (t^8.714*y)/(g1^5*g2*g3^9*g4^5) - (t^8.714*y)/(g1*g2^9*g3^5*g4^5) - (3*t^8.714*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.714*y)/(g1^9*g2*g3^5*g4^5) - (t^8.714*y)/(g1^5*g2^9*g3*g4^5) - (t^8.714*y)/(g1^9*g2^5*g3*g4^5) - (t^8.714*y)/(g1*g2^9*g3^9*g4) - (t^8.714*y)/(g1^5*g2^5*g3^9*g4) - (t^8.714*y)/(g1^9*g2*g3^9*g4) - (t^8.714*y)/(g1^5*g2^9*g3^5*g4) - (t^8.714*y)/(g1^9*g2^5*g3^5*g4) - (t^8.714*y)/(g1^9*g2^9*g3*g4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
339 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.7729 0.9519 0.812 [M:[0.7777, 1.2223, 0.7777, 0.7777, 0.7777, 0.7473], q:[0.596, 0.6263], qb:[0.6263, 0.596], phi:[0.3888]] t^2.242 + 4*t^2.333 + t^3.576 + t^3.667 + t^4.484 + 4*t^4.575 + 10*t^4.666 + 3*t^4.742 + 4*t^4.833 + 3*t^4.925 + t^5.818 + t^5.909 - 4*t^6. - t^4.167/y - t^4.167*y detail