Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46568 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_1$ + $ M_1^2$ 0.7536 0.9338 0.807 [X:[], M:[1.0, 0.8465, 0.693, 0.8465, 0.8465], q:[0.5, 0.5], qb:[0.6535, 0.6535], phi:[0.4233]] [X:[], M:[[0, 0], [-6, 2], [-4, -4], [2, -6], [-2, -2]], q:[[2, -2], [-2, 2]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_5$, $ \phi_1^2$, $ M_2$, $ M_1$, $ q_2\tilde{q}_1$, $ M_3^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_3M_4$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_2M_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_4^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_1M_3$, $ M_2M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_5$, $ M_1\phi_1^2$ $M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$ -3 t^2.08 + 4*t^2.54 + t^3. + t^3.46 + t^4.16 + 3*t^4.27 + 4*t^4.62 + 4*t^4.73 + 11*t^5.08 + 3*t^5.19 + t^5.54 - 3*t^6. + t^6.24 + 3*t^6.35 - 3*t^6.46 + 4*t^6.7 + 12*t^6.81 + 11*t^7.16 + 15*t^7.27 + 21*t^7.62 + 8*t^7.73 - 6*t^8.08 - 4*t^8.19 + t^8.32 + 3*t^8.43 - 16*t^8.54 - 4*t^8.65 + 4*t^8.78 + 12*t^8.89 - t^4.27/y - t^6.35/y - (4*t^6.81)/y + (4*t^7.62)/y + (4*t^7.73)/y + (7*t^8.08)/y + t^8.19/y - t^8.43/y + (5*t^8.54)/y - (4*t^8.89)/y - t^4.27*y - t^6.35*y - 4*t^6.81*y + 4*t^7.62*y + 4*t^7.73*y + 7*t^8.08*y + t^8.19*y - t^8.43*y + 5*t^8.54*y - 4*t^8.89*y t^2.08/(g1^4*g2^4) + (g1^2*t^2.54)/g2^6 + (2*t^2.54)/(g1^2*g2^2) + (g2^2*t^2.54)/g1^6 + t^3. + g1^2*g2^2*t^3.46 + t^4.16/(g1^8*g2^8) + (g1^3*t^4.27)/g2^5 + t^4.27/(g1*g2) + (g2^3*t^4.27)/g1^5 + t^4.62/(g1^2*g2^10) + (2*t^4.62)/(g1^6*g2^6) + t^4.62/(g1^10*g2^2) + (g1^5*t^4.73)/g2^3 + 2*g1*g2*t^4.73 + (g2^5*t^4.73)/g1^3 + (2*t^5.08)/g1^8 + (g1^4*t^5.08)/g2^12 + (2*t^5.08)/g2^8 + (5*t^5.08)/(g1^4*g2^4) + (g2^4*t^5.08)/g1^12 + (g1^7*t^5.19)/g2 + g1^3*g2^3*t^5.19 + (g2^7*t^5.19)/g1 + t^5.54/(g1^2*g2^2) - t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 + t^6.24/(g1^12*g2^12) + t^6.35/(g1*g2^9) + t^6.35/(g1^5*g2^5) + t^6.35/(g1^9*g2) - (g1^6*t^6.46)/g2^2 - g1^2*g2^2*t^6.46 - (g2^6*t^6.46)/g1^2 + t^6.7/(g1^6*g2^14) + (2*t^6.7)/(g1^10*g2^10) + t^6.7/(g1^14*g2^6) + (g1^5*t^6.81)/g2^11 + (3*g1*t^6.81)/g2^7 + (4*t^6.81)/(g1^3*g2^3) + (3*g2*t^6.81)/g1^7 + (g2^5*t^6.81)/g1^11 + t^7.16/g1^16 + t^7.16/g2^16 + (2*t^7.16)/(g1^4*g2^12) + (5*t^7.16)/(g1^8*g2^8) + (2*t^7.16)/(g1^12*g2^4) + (g1^7*t^7.27)/g2^9 + (4*g1^3*t^7.27)/g2^5 + (5*t^7.27)/(g1*g2) + (4*g2^3*t^7.27)/g1^5 + (g2^7*t^7.27)/g1^9 + (g1^6*t^7.62)/g2^18 + (2*g1^2*t^7.62)/g2^14 + (4*t^7.62)/(g1^2*g2^10) + (7*t^7.62)/(g1^6*g2^6) + (4*t^7.62)/(g1^10*g2^2) + (2*g2^2*t^7.62)/g1^14 + (g2^6*t^7.62)/g1^18 + (g1^9*t^7.73)/g2^7 + (2*g1^5*t^7.73)/g2^3 + 2*g1*g2*t^7.73 + (2*g2^5*t^7.73)/g1^3 + (g2^9*t^7.73)/g1^7 - (2*t^8.08)/g1^8 - (2*t^8.08)/g2^8 - (2*t^8.08)/(g1^4*g2^4) - (g1^7*t^8.19)/g2 - 2*g1^3*g2^3*t^8.19 - (g2^7*t^8.19)/g1 + t^8.32/(g1^16*g2^16) + t^8.43/(g1^5*g2^13) + t^8.43/(g1^9*g2^9) + t^8.43/(g1^13*g2^5) - (5*g1^2*t^8.54)/g2^6 - (6*t^8.54)/(g1^2*g2^2) - (5*g2^2*t^8.54)/g1^6 - g1^9*g2*t^8.65 - 2*g1^5*g2^5*t^8.65 - g1*g2^9*t^8.65 + t^8.78/(g1^10*g2^18) + (2*t^8.78)/(g1^14*g2^14) + t^8.78/(g1^18*g2^10) + (g1*t^8.89)/g2^15 + (3*t^8.89)/(g1^3*g2^11) + (4*t^8.89)/(g1^7*g2^7) + (3*t^8.89)/(g1^11*g2^3) + (g2*t^8.89)/g1^15 - t^4.27/(g1*g2*y) - t^6.35/(g1^5*g2^5*y) - (g1*t^6.81)/(g2^7*y) - (2*t^6.81)/(g1^3*g2^3*y) - (g2*t^6.81)/(g1^7*y) + t^7.62/(g1^2*g2^10*y) + (2*t^7.62)/(g1^6*g2^6*y) + t^7.62/(g1^10*g2^2*y) + (g1^5*t^7.73)/(g2^3*y) + (2*g1*g2*t^7.73)/y + (g2^5*t^7.73)/(g1^3*y) + (2*t^8.08)/(g1^8*y) + (2*t^8.08)/(g2^8*y) + (3*t^8.08)/(g1^4*g2^4*y) + (g1^3*g2^3*t^8.19)/y - t^8.43/(g1^9*g2^9*y) + (g1^2*t^8.54)/(g2^6*y) + (3*t^8.54)/(g1^2*g2^2*y) + (g2^2*t^8.54)/(g1^6*y) - t^8.89/(g1^3*g2^11*y) - (2*t^8.89)/(g1^7*g2^7*y) - t^8.89/(g1^11*g2^3*y) - (t^4.27*y)/(g1*g2) - (t^6.35*y)/(g1^5*g2^5) - (g1*t^6.81*y)/g2^7 - (2*t^6.81*y)/(g1^3*g2^3) - (g2*t^6.81*y)/g1^7 + (t^7.62*y)/(g1^2*g2^10) + (2*t^7.62*y)/(g1^6*g2^6) + (t^7.62*y)/(g1^10*g2^2) + (g1^5*t^7.73*y)/g2^3 + 2*g1*g2*t^7.73*y + (g2^5*t^7.73*y)/g1^3 + (2*t^8.08*y)/g1^8 + (2*t^8.08*y)/g2^8 + (3*t^8.08*y)/(g1^4*g2^4) + g1^3*g2^3*t^8.19*y - (t^8.43*y)/(g1^9*g2^9) + (g1^2*t^8.54*y)/g2^6 + (3*t^8.54*y)/(g1^2*g2^2) + (g2^2*t^8.54*y)/g1^6 - (t^8.89*y)/(g1^3*g2^11) - (2*t^8.89*y)/(g1^7*g2^7) - (t^8.89*y)/(g1^11*g2^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46120 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_1$ 0.7904 0.9838 0.8034 [X:[], M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] 6*t^2.29 + t^3.71 + 21*t^4.57 + 10*t^4.86 - 10*t^6. - t^4.14/y - t^4.14*y detail {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21}