Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45872 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ | 0.669 | 0.8353 | 0.8009 | [M:[0.7026, 0.6881, 0.6965], q:[0.4795, 0.8179], qb:[0.8324, 0.4712], phi:[0.3498]] | [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | t^2.064 + t^2.089 + t^2.099 + t^2.108 + t^2.852 + t^3.867 + t^3.876 + t^3.901 + t^3.926 + t^4.129 + t^4.154 + t^4.163 + t^4.172 + t^4.179 + t^4.188 + 2*t^4.197 + t^4.206 + t^4.216 + t^4.916 + t^4.941 + 2*t^4.951 + t^4.96 + t^5.704 + t^5.931 + t^5.941 + t^5.956 + 2*t^5.966 + t^5.975 + t^5.984 + t^5.991 - 2*t^6. + t^6.016 + t^6.193 + t^6.218 + t^6.227 + t^6.237 + t^6.243 + t^6.252 + 2*t^6.262 + t^6.268 + t^6.271 + t^6.277 + t^6.28 + 2*t^6.287 + 2*t^6.296 + 2*t^6.305 + t^6.314 + t^6.324 + t^6.719 + t^6.728 + t^6.753 + t^6.778 + t^6.981 + t^7.006 + t^7.015 + t^7.031 + t^7.04 + t^7.049 + t^7.059 + t^7.068 - t^7.074 - t^7.084 + t^7.734 + t^7.743 + t^7.753 + t^7.768 + t^7.794 + t^7.803 - t^7.837 + t^7.853 + t^7.996 + t^8.005 + t^8.021 + 2*t^8.03 + t^8.039 + t^8.046 + t^8.049 + 2*t^8.055 - t^8.064 + t^8.074 + t^8.08 + t^8.083 - 3*t^8.089 + t^8.092 - 2*t^8.099 + t^8.105 - 3*t^8.108 - t^8.133 + t^8.257 + t^8.282 + t^8.292 + t^8.301 + t^8.307 + t^8.317 + 2*t^8.326 + t^8.333 + t^8.335 + t^8.342 + t^8.344 + 2*t^8.351 + t^8.358 + 2*t^8.36 + t^8.367 + 2*t^8.369 + 2*t^8.376 + t^8.379 + 2*t^8.385 + t^8.388 + 3*t^8.395 + 2*t^8.404 + 2*t^8.413 + t^8.422 + t^8.431 + t^8.556 + t^8.783 + t^8.793 + t^8.809 + 2*t^8.818 + t^8.827 + t^8.836 - 3*t^8.852 - t^8.861 + t^8.868 - t^8.886 - t^4.049/y - t^6.114/y - t^6.139/y - t^6.148/y - t^6.157/y + t^7.154/y + t^7.163/y + t^7.172/y + t^7.188/y + t^7.197/y + t^7.206/y + t^7.916/y + (2*t^7.941)/y + (2*t^7.951)/y + (2*t^7.96)/y + t^7.985/y - t^8.178/y - t^8.203/y - t^8.212/y - t^8.222/y - t^8.228/y - t^8.237/y - (2*t^8.247)/y - t^8.256/y - t^8.265/y + t^8.931/y + t^8.941/y + t^8.956/y + (3*t^8.966)/y + (2*t^8.975)/y + t^8.984/y + (2*t^8.991)/y - t^4.049*y - t^6.114*y - t^6.139*y - t^6.148*y - t^6.157*y + t^7.154*y + t^7.163*y + t^7.172*y + t^7.188*y + t^7.197*y + t^7.206*y + t^7.916*y + 2*t^7.941*y + 2*t^7.951*y + 2*t^7.96*y + t^7.985*y - t^8.178*y - t^8.203*y - t^8.212*y - t^8.222*y - t^8.228*y - t^8.237*y - 2*t^8.247*y - t^8.256*y - t^8.265*y + t^8.931*y + t^8.941*y + t^8.956*y + 3*t^8.966*y + 2*t^8.975*y + t^8.984*y + 2*t^8.991*y | (g3*t^2.064)/(g1^3*g2^4) + t^2.089/(g2*g3) + t^2.099/(g1^2*g2^2) + (g3*t^2.108)/(g1^4*g2^3) + g1^3*g2^3*t^2.852 + g1*g3*t^3.867 + (g3^2*t^3.876)/(g1*g2) + g1^2*g2^2*t^3.901 + (g1^5*g2^5*t^3.926)/g3^2 + (g3^2*t^4.129)/(g1^6*g2^8) + t^4.154/(g1^3*g2^5) + (g3*t^4.163)/(g1^5*g2^6) + (g3^2*t^4.172)/(g1^7*g2^7) + t^4.179/(g2^2*g3^2) + t^4.188/(g1^2*g2^3*g3) + (2*t^4.197)/(g1^4*g2^4) + (g3*t^4.206)/(g1^6*g2^5) + (g3^2*t^4.216)/(g1^8*g2^6) + (g3*t^4.916)/g2 + (g1^3*g2^2*t^4.941)/g3 + 2*g1*g2*t^4.951 + (g3*t^4.96)/g1 + g1^6*g2^6*t^5.704 + (g3^2*t^5.931)/(g1^2*g2^4) + (g3^3*t^5.941)/(g1^4*g2^5) + (g1*t^5.956)/g2 + (2*g3*t^5.966)/(g1*g2^2) + (g3^2*t^5.975)/(g1^3*g2^3) + (g3^3*t^5.984)/(g1^5*g2^4) + (g1^2*g2*t^5.991)/g3 - 2*t^6. + (g1^5*g2^4*t^6.016)/g3^3 + (g3^3*t^6.193)/(g1^9*g2^12) + (g3*t^6.218)/(g1^6*g2^9) + (g3^2*t^6.227)/(g1^8*g2^10) + (g3^3*t^6.237)/(g1^10*g2^11) + t^6.243/(g1^3*g2^6*g3) + t^6.252/(g1^5*g2^7) + (2*g3*t^6.262)/(g1^7*g2^8) + t^6.268/(g2^3*g3^3) + (g3^2*t^6.271)/(g1^9*g2^9) + t^6.277/(g1^2*g2^4*g3^2) + (g3^3*t^6.28)/(g1^11*g2^10) + (2*t^6.287)/(g1^4*g2^5*g3) + (2*t^6.296)/(g1^6*g2^6) + (2*g3*t^6.305)/(g1^8*g2^7) + (g3^2*t^6.314)/(g1^10*g2^8) + (g3^3*t^6.324)/(g1^12*g2^9) + g1^4*g2^3*g3*t^6.719 + g1^2*g2^2*g3^2*t^6.728 + g1^5*g2^5*t^6.753 + (g1^8*g2^8*t^6.778)/g3^2 + (g3^2*t^6.981)/(g1^3*g2^5) + t^7.006/g2^2 + (g3*t^7.015)/(g1^2*g2^3) + (g1^3*g2*t^7.031)/g3^2 + (g1*t^7.04)/g3 + t^7.049/(g1*g2) + (g3*t^7.059)/(g1^3*g2^2) + (g3^2*t^7.068)/(g1^5*g2^3) - (g1^2*g2^2*t^7.074)/g3^2 - (g2*t^7.084)/g3 + g1^2*g3^2*t^7.734 + (g3^3*t^7.743)/g2 + (g3^4*t^7.753)/(g1^2*g2^2) + g1^3*g2^2*g3*t^7.768 + (g1^6*g2^5*t^7.794)/g3 + g1^4*g2^4*t^7.803 - (g1^5*g2^6*t^7.837)/g3 + (g1^10*g2^10*t^7.853)/g3^4 + (g3^3*t^7.996)/(g1^5*g2^8) + (g3^4*t^8.005)/(g1^7*g2^9) + (g3*t^8.021)/(g1^2*g2^5) + (2*g3^2*t^8.03)/(g1^4*g2^6) + (g3^3*t^8.039)/(g1^6*g2^7) + (g1*t^8.046)/(g2^2*g3) + (g3^4*t^8.049)/(g1^8*g2^8) + (2*t^8.055)/(g1*g2^3) - (g3*t^8.064)/(g1^3*g2^4) + (g3^2*t^8.074)/(g1^5*g2^5) + (g1^2*t^8.08)/g3^2 + (g3^3*t^8.083)/(g1^7*g2^6) - (3*t^8.089)/(g2*g3) + (g3^4*t^8.092)/(g1^9*g2^7) - (2*t^8.099)/(g1^2*g2^2) + (g1^5*g2^3*t^8.105)/g3^4 - (3*g3*t^8.108)/(g1^4*g2^3) - t^8.133/(g1*g3) + (g3^4*t^8.257)/(g1^12*g2^16) + (g3^2*t^8.282)/(g1^9*g2^13) + (g3^3*t^8.292)/(g1^11*g2^14) + (g3^4*t^8.301)/(g1^13*g2^15) + t^8.307/(g1^6*g2^10) + (g3*t^8.317)/(g1^8*g2^11) + (2*g3^2*t^8.326)/(g1^10*g2^12) + t^8.333/(g1^3*g2^7*g3^2) + (g3^3*t^8.335)/(g1^12*g2^13) + t^8.342/(g1^5*g2^8*g3) + (g3^4*t^8.344)/(g1^14*g2^14) + (2*t^8.351)/(g1^7*g2^9) + t^8.358/(g2^4*g3^4) + (2*g3*t^8.36)/(g1^9*g2^10) + t^8.367/(g1^2*g2^5*g3^3) + (2*g3^2*t^8.369)/(g1^11*g2^11) + (2*t^8.376)/(g1^4*g2^6*g3^2) + (g3^3*t^8.379)/(g1^13*g2^12) + (2*t^8.385)/(g1^6*g2^7*g3) + (g3^4*t^8.388)/(g1^15*g2^13) + (3*t^8.395)/(g1^8*g2^8) + (2*g3*t^8.404)/(g1^10*g2^9) + (2*g3^2*t^8.413)/(g1^12*g2^10) + (g3^3*t^8.422)/(g1^14*g2^11) + (g3^4*t^8.431)/(g1^16*g2^12) + g1^9*g2^9*t^8.556 + (g1*g3^2*t^8.783)/g2 + (g3^3*t^8.793)/(g1*g2^2) + g1^4*g2^2*t^8.809 + 2*g1^2*g2*g3*t^8.818 + g3^2*t^8.827 + (g3^3*t^8.836)/(g1^2*g2) - 3*g1^3*g2^3*t^8.852 - g1*g2^2*g3*t^8.861 + (g1^8*g2^7*t^8.868)/g3^3 - (g1^4*g2^5*t^8.886)/g3 - t^4.049/(g1*g2*y) - (g3*t^6.114)/(g1^4*g2^5*y) - t^6.139/(g1*g2^2*g3*y) - t^6.148/(g1^3*g2^3*y) - (g3*t^6.157)/(g1^5*g2^4*y) + t^7.154/(g1^3*g2^5*y) + (g3*t^7.163)/(g1^5*g2^6*y) + (g3^2*t^7.172)/(g1^7*g2^7*y) + t^7.188/(g1^2*g2^3*g3*y) + t^7.197/(g1^4*g2^4*y) + (g3*t^7.206)/(g1^6*g2^5*y) + (g3*t^7.916)/(g2*y) + (2*g1^3*g2^2*t^7.941)/(g3*y) + (2*g1*g2*t^7.951)/y + (2*g3*t^7.96)/(g1*y) + (g1^2*g2^3*t^7.985)/(g3*y) - (g3^2*t^8.178)/(g1^7*g2^9*y) - t^8.203/(g1^4*g2^6*y) - (g3*t^8.212)/(g1^6*g2^7*y) - (g3^2*t^8.222)/(g1^8*g2^8*y) - t^8.228/(g1*g2^3*g3^2*y) - t^8.237/(g1^3*g2^4*g3*y) - (2*t^8.247)/(g1^5*g2^5*y) - (g3*t^8.256)/(g1^7*g2^6*y) - (g3^2*t^8.265)/(g1^9*g2^7*y) + (g3^2*t^8.931)/(g1^2*g2^4*y) + (g3^3*t^8.941)/(g1^4*g2^5*y) + (g1*t^8.956)/(g2*y) + (3*g3*t^8.966)/(g1*g2^2*y) + (2*g3^2*t^8.975)/(g1^3*g2^3*y) + (g3^3*t^8.984)/(g1^5*g2^4*y) + (2*g1^2*g2*t^8.991)/(g3*y) - (t^4.049*y)/(g1*g2) - (g3*t^6.114*y)/(g1^4*g2^5) - (t^6.139*y)/(g1*g2^2*g3) - (t^6.148*y)/(g1^3*g2^3) - (g3*t^6.157*y)/(g1^5*g2^4) + (t^7.154*y)/(g1^3*g2^5) + (g3*t^7.163*y)/(g1^5*g2^6) + (g3^2*t^7.172*y)/(g1^7*g2^7) + (t^7.188*y)/(g1^2*g2^3*g3) + (t^7.197*y)/(g1^4*g2^4) + (g3*t^7.206*y)/(g1^6*g2^5) + (g3*t^7.916*y)/g2 + (2*g1^3*g2^2*t^7.941*y)/g3 + 2*g1*g2*t^7.951*y + (2*g3*t^7.96*y)/g1 + (g1^2*g2^3*t^7.985*y)/g3 - (g3^2*t^8.178*y)/(g1^7*g2^9) - (t^8.203*y)/(g1^4*g2^6) - (g3*t^8.212*y)/(g1^6*g2^7) - (g3^2*t^8.222*y)/(g1^8*g2^8) - (t^8.228*y)/(g1*g2^3*g3^2) - (t^8.237*y)/(g1^3*g2^4*g3) - (2*t^8.247*y)/(g1^5*g2^5) - (g3*t^8.256*y)/(g1^7*g2^6) - (g3^2*t^8.265*y)/(g1^9*g2^7) + (g3^2*t^8.931*y)/(g1^2*g2^4) + (g3^3*t^8.941*y)/(g1^4*g2^5) + (g1*t^8.956*y)/g2 + (3*g3*t^8.966*y)/(g1*g2^2) + (2*g3^2*t^8.975*y)/(g1^3*g2^3) + (g3^3*t^8.984*y)/(g1^5*g2^4) + (2*g1^2*g2*t^8.991*y)/g3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
45970 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.5429 | 0.6874 | 0.7898 | [M:[0.7766, 1.1258, 0.9719], q:[0.2674, 0.9561], qb:[0.6068, 0.4213], phi:[0.4371]] | t^2.066 + t^2.33 + t^2.623 + 2*t^2.916 + 2*t^3.377 + t^3.839 + 2*t^4.132 + t^4.396 + t^4.659 + 2*t^4.689 + t^4.952 + 2*t^4.982 + 2*t^5.245 + 2*t^5.443 + t^5.538 + t^5.707 + 3*t^5.831 + t^5.905 - 2*t^6. - t^4.311/y - t^4.311*y | detail | |
45961 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ | 0.6107 | 0.7595 | 0.8041 | [M:[0.6889, 1.0, 0.8353], q:[0.3461, 0.965], qb:[0.6539, 0.5108], phi:[0.381]] | t^2.067 + t^2.286 + t^2.506 + t^2.571 + t^3. + t^3.22 + t^3.714 + t^4.133 + t^4.208 + t^4.353 + t^4.427 + 2*t^4.573 + t^4.637 + t^4.792 + 2*t^4.857 + t^5.012 + t^5.067 + t^5.077 + t^5.141 + t^5.286 + t^5.506 + t^5.571 + t^5.726 + t^5.79 - t^6. - t^4.143/y - t^4.143*y | detail | |
46029 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6895 | 0.8748 | 0.7882 | [M:[0.7027, 0.692, 0.6884, 0.692], q:[0.4765, 0.8207], qb:[0.8315, 0.4801], phi:[0.3478]] | t^2.065 + 2*t^2.076 + t^2.087 + t^2.108 + t^2.87 + 2*t^3.903 + t^3.913 + t^4.13 + 2*t^4.141 + 4*t^4.152 + 2*t^4.163 + 2*t^4.173 + 2*t^4.184 + t^4.195 + t^4.216 + t^4.935 + 2*t^4.946 + 2*t^4.957 + t^4.978 + t^5.74 + 2*t^5.968 + 4*t^5.978 + 2*t^5.989 - 2*t^6. - t^4.043/y - t^4.043*y | detail | |
45939 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{2}$ | 0.6485 | 0.7963 | 0.8144 | [M:[0.7078, 0.6913, 0.7007, 1.2958], q:[0.4766, 0.8157], qb:[0.8322, 0.4671], phi:[0.3521]] | t^2.074 + t^2.102 + t^2.123 + t^2.831 + t^3.848 + t^3.859 + 2*t^3.887 + t^3.916 + t^4.148 + t^4.176 + t^4.197 + t^4.204 + t^4.225 + t^4.247 + t^4.905 + t^4.933 + t^4.944 + t^4.954 + t^5.662 + t^5.922 + t^5.933 + t^5.951 + 2*t^5.961 + t^5.982 + 2*t^5.989 - 3*t^6. - t^4.056/y - t^4.056*y | detail | |
45944 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ | 0.6895 | 0.8743 | 0.7886 | [M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.4789, 0.8263], qb:[0.8263, 0.4789], phi:[0.3474]] | 5*t^2.084 + t^2.873 + 3*t^3.916 + 15*t^4.169 + 6*t^4.958 + t^5.747 + 6*t^6. - t^4.042/y - t^4.042*y | detail | |
46054 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}$ | 0.6689 | 0.8348 | 0.8013 | [M:[0.6952, 0.6952, 0.702], q:[0.4794, 0.8253], qb:[0.8253, 0.4727], phi:[0.3493]] | 2*t^2.086 + t^2.096 + t^2.106 + t^2.856 + t^3.884 + t^3.894 + t^3.904 + t^3.924 + 3*t^4.171 + 2*t^4.182 + 3*t^4.192 + t^4.202 + t^4.212 + 2*t^4.942 + 2*t^4.952 + t^4.962 + t^5.713 + 2*t^5.97 + 2*t^5.98 + 2*t^5.99 - t^6. - t^4.048/y - t^4.048*y | detail | |
46009 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ | 0.6689 | 0.835 | 0.8011 | [M:[0.7054, 0.6926, 0.6926], q:[0.4758, 0.8189], qb:[0.8316, 0.4758], phi:[0.3495]] | 2*t^2.078 + t^2.097 + t^2.116 + t^2.855 + t^3.884 + 3*t^3.903 + 3*t^4.156 + 2*t^4.175 + 3*t^4.194 + t^4.213 + t^4.232 + 2*t^4.932 + 2*t^4.952 + t^4.971 + t^5.709 + 2*t^5.962 + 5*t^5.981 - t^6. - t^4.048/y - t^4.048*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45860 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6485 | 0.7967 | 0.8141 | [M:[0.696, 0.696], q:[0.4802, 0.8238], qb:[0.8238, 0.4626], phi:[0.3524]] | 2*t^2.088 + t^2.114 + t^2.828 + t^3.833 + 2*t^3.859 + t^3.886 + t^3.939 + 3*t^4.176 + 2*t^4.202 + t^4.229 + 2*t^4.916 + 2*t^4.943 + t^5.657 + 2*t^5.921 + 4*t^5.947 + 2*t^5.974 - 2*t^6. - t^4.057/y - t^4.057*y | detail |