Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45944 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ | 0.6895 | 0.8743 | 0.7886 | [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.4789, 0.8263], qb:[0.8263, 0.4789], phi:[0.3474]] | [X:[], M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [-1, 0, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ M_4$, $ M_3$, $ M_2$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_3q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$ | $M_3\phi_1q_1^2$, $ M_4\phi_1q_1^2$, $ \phi_1^3q_1^2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_3\phi_1q_1\tilde{q}_2$, $ M_4\phi_1q_1\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ | 6 | 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. + 35*t^6.25 + 3*t^6.79 + 12*t^7.04 + 3*t^7.83 + t^8.08 + 70*t^8.34 + t^8.62 + t^8.87 - t^4.04/y - (5*t^6.13)/y + (10*t^7.17)/y + (10*t^7.96)/y - (15*t^8.21)/y - t^4.04*y - 5*t^6.13*y + 10*t^7.17*y + 10*t^7.96*y - 15*t^8.21*y | t^2.08/(g1^2*g2^2) + t^2.08/(g1*g3) + t^2.08/(g2*g3) + (g3*t^2.08)/(g1^3*g2^4) + (g3*t^2.08)/(g1^4*g2^3) + g1^3*g2^3*t^2.87 + g1^2*g2^2*t^3.92 + (g1^5*g2^5*t^3.92)/g3^2 + (g3^2*t^3.92)/(g1*g2) + t^4.17/(g1^3*g2^5) + (3*t^4.17)/(g1^4*g2^4) + t^4.17/(g1^5*g2^3) + t^4.17/(g1^2*g3^2) + t^4.17/(g2^2*g3^2) + t^4.17/(g1*g2*g3^2) + t^4.17/(g1^2*g2^3*g3) + t^4.17/(g1^3*g2^2*g3) + (g3*t^4.17)/(g1^5*g2^6) + (g3*t^4.17)/(g1^6*g2^5) + (g3^2*t^4.17)/(g1^6*g2^8) + (g3^2*t^4.17)/(g1^7*g2^7) + (g3^2*t^4.17)/(g1^8*g2^6) + 2*g1*g2*t^4.96 + (g1^3*g2^2*t^4.96)/g3 + (g1^2*g2^3*t^4.96)/g3 + (g3*t^4.96)/g1 + (g3*t^4.96)/g2 + g1^6*g2^6*t^5.75 - 2*t^6. + (g1^5*g2^4*t^6.)/g3^3 + (g1^4*g2^5*t^6.)/g3^3 + (g1^2*g2*t^6.)/g3 + (g1*g2^2*t^6.)/g3 + (g3*t^6.)/(g1*g2^2) + (g3*t^6.)/(g1^2*g2) + (g3^3*t^6.)/(g1^4*g2^5) + (g3^3*t^6.)/(g1^5*g2^4) + t^6.25/(g1^5*g2^7) + (3*t^6.25)/(g1^6*g2^6) + t^6.25/(g1^7*g2^5) + t^6.25/(g1^3*g3^3) + t^6.25/(g2^3*g3^3) + t^6.25/(g1*g2^2*g3^3) + t^6.25/(g1^2*g2*g3^3) + t^6.25/(g1^2*g2^4*g3^2) + t^6.25/(g1^3*g2^3*g3^2) + t^6.25/(g1^4*g2^2*g3^2) + t^6.25/(g1^3*g2^6*g3) + (3*t^6.25)/(g1^4*g2^5*g3) + (3*t^6.25)/(g1^5*g2^4*g3) + t^6.25/(g1^6*g2^3*g3) + (g3*t^6.25)/(g1^6*g2^9) + (3*g3*t^6.25)/(g1^7*g2^8) + (3*g3*t^6.25)/(g1^8*g2^7) + (g3*t^6.25)/(g1^9*g2^6) + (g3^2*t^6.25)/(g1^8*g2^10) + (g3^2*t^6.25)/(g1^9*g2^9) + (g3^2*t^6.25)/(g1^10*g2^8) + (g3^3*t^6.25)/(g1^9*g2^12) + (g3^3*t^6.25)/(g1^10*g2^11) + (g3^3*t^6.25)/(g1^11*g2^10) + (g3^3*t^6.25)/(g1^12*g2^9) + g1^5*g2^5*t^6.79 + (g1^8*g2^8*t^6.79)/g3^2 + g1^2*g2^2*g3^2*t^6.79 + t^7.04/g1^2 + t^7.04/g2^2 + (2*t^7.04)/(g1*g2) + (g1^3*g2*t^7.04)/g3^2 + (g1*g2^3*t^7.04)/g3^2 + (g1*t^7.04)/g3 + (g2*t^7.04)/g3 + (g3*t^7.04)/(g1^2*g2^3) + (g3*t^7.04)/(g1^3*g2^2) + (g3^2*t^7.04)/(g1^3*g2^5) + (g3^2*t^7.04)/(g1^5*g2^3) + g1^4*g2^4*t^7.83 + (g1^10*g2^10*t^7.83)/g3^4 + (g3^4*t^7.83)/(g1^2*g2^2) + t^8.08/(g1*g2^3) - t^8.08/(g1^2*g2^2) + t^8.08/(g1^3*g2) + (g1^5*g2^3*t^8.08)/g3^4 + (g1^4*g2^4*t^8.08)/g3^4 + (g1^3*g2^5*t^8.08)/g3^4 + (g1^2*t^8.08)/g3^2 + (g1*g2*t^8.08)/g3^2 + (g2^2*t^8.08)/g3^2 - (3*t^8.08)/(g1*g3) - (3*t^8.08)/(g2*g3) - (3*g3*t^8.08)/(g1^3*g2^4) - (3*g3*t^8.08)/(g1^4*g2^3) + (g3^2*t^8.08)/(g1^4*g2^6) + (g3^2*t^8.08)/(g1^5*g2^5) + (g3^2*t^8.08)/(g1^6*g2^4) + (g3^4*t^8.08)/(g1^7*g2^9) + (g3^4*t^8.08)/(g1^8*g2^8) + (g3^4*t^8.08)/(g1^9*g2^7) + t^8.34/(g1^6*g2^10) + (3*t^8.34)/(g1^7*g2^9) + (6*t^8.34)/(g1^8*g2^8) + (3*t^8.34)/(g1^9*g2^7) + t^8.34/(g1^10*g2^6) + t^8.34/(g1^4*g3^4) + t^8.34/(g2^4*g3^4) + t^8.34/(g1*g2^3*g3^4) + t^8.34/(g1^2*g2^2*g3^4) + t^8.34/(g1^3*g2*g3^4) + t^8.34/(g1^2*g2^5*g3^3) + t^8.34/(g1^3*g2^4*g3^3) + t^8.34/(g1^4*g2^3*g3^3) + t^8.34/(g1^5*g2^2*g3^3) + t^8.34/(g1^3*g2^7*g3^2) + (3*t^8.34)/(g1^4*g2^6*g3^2) + (3*t^8.34)/(g1^5*g2^5*g3^2) + (3*t^8.34)/(g1^6*g2^4*g3^2) + t^8.34/(g1^7*g2^3*g3^2) + t^8.34/(g1^5*g2^8*g3) + (3*t^8.34)/(g1^6*g2^7*g3) + (3*t^8.34)/(g1^7*g2^6*g3) + t^8.34/(g1^8*g2^5*g3) + (g3*t^8.34)/(g1^8*g2^11) + (3*g3*t^8.34)/(g1^9*g2^10) + (3*g3*t^8.34)/(g1^10*g2^9) + (g3*t^8.34)/(g1^11*g2^8) + (g3^2*t^8.34)/(g1^9*g2^13) + (3*g3^2*t^8.34)/(g1^10*g2^12) + (3*g3^2*t^8.34)/(g1^11*g2^11) + (3*g3^2*t^8.34)/(g1^12*g2^10) + (g3^2*t^8.34)/(g1^13*g2^9) + (g3^3*t^8.34)/(g1^11*g2^14) + (g3^3*t^8.34)/(g1^12*g2^13) + (g3^3*t^8.34)/(g1^13*g2^12) + (g3^3*t^8.34)/(g1^14*g2^11) + (g3^4*t^8.34)/(g1^12*g2^16) + (g3^4*t^8.34)/(g1^13*g2^15) + (g3^4*t^8.34)/(g1^14*g2^14) + (g3^4*t^8.34)/(g1^15*g2^13) + (g3^4*t^8.34)/(g1^16*g2^12) + g1^9*g2^9*t^8.62 - 3*g1^3*g2^3*t^8.87 + (g1^8*g2^7*t^8.87)/g3^3 + (g1^7*g2^8*t^8.87)/g3^3 + (g3^3*t^8.87)/(g1*g2^2) + (g3^3*t^8.87)/(g1^2*g2) - t^4.04/(g1*g2*y) - t^6.13/(g1^3*g2^3*y) - t^6.13/(g1*g2^2*g3*y) - t^6.13/(g1^2*g2*g3*y) - (g3*t^6.13)/(g1^4*g2^5*y) - (g3*t^6.13)/(g1^5*g2^4*y) + t^7.17/(g1^3*g2^5*y) + (2*t^7.17)/(g1^4*g2^4*y) + t^7.17/(g1^5*g2^3*y) + t^7.17/(g1*g2*g3^2*y) + t^7.17/(g1^2*g2^3*g3*y) + t^7.17/(g1^3*g2^2*g3*y) + (g3*t^7.17)/(g1^5*g2^6*y) + (g3*t^7.17)/(g1^6*g2^5*y) + (g3^2*t^7.17)/(g1^7*g2^7*y) + (2*g1*g2*t^7.96)/y + (2*g1^3*g2^2*t^7.96)/(g3*y) + (2*g1^2*g2^3*t^7.96)/(g3*y) + (2*g3*t^7.96)/(g1*y) + (2*g3*t^7.96)/(g2*y) - t^8.21/(g1^4*g2^6*y) - (3*t^8.21)/(g1^5*g2^5*y) - t^8.21/(g1^6*g2^4*y) - t^8.21/(g1*g2^3*g3^2*y) - t^8.21/(g1^2*g2^2*g3^2*y) - t^8.21/(g1^3*g2*g3^2*y) - t^8.21/(g1^3*g2^4*g3*y) - t^8.21/(g1^4*g2^3*g3*y) - (g3*t^8.21)/(g1^6*g2^7*y) - (g3*t^8.21)/(g1^7*g2^6*y) - (g3^2*t^8.21)/(g1^7*g2^9*y) - (g3^2*t^8.21)/(g1^8*g2^8*y) - (g3^2*t^8.21)/(g1^9*g2^7*y) - (t^4.04*y)/(g1*g2) - (t^6.13*y)/(g1^3*g2^3) - (t^6.13*y)/(g1*g2^2*g3) - (t^6.13*y)/(g1^2*g2*g3) - (g3*t^6.13*y)/(g1^4*g2^5) - (g3*t^6.13*y)/(g1^5*g2^4) + (t^7.17*y)/(g1^3*g2^5) + (2*t^7.17*y)/(g1^4*g2^4) + (t^7.17*y)/(g1^5*g2^3) + (t^7.17*y)/(g1*g2*g3^2) + (t^7.17*y)/(g1^2*g2^3*g3) + (t^7.17*y)/(g1^3*g2^2*g3) + (g3*t^7.17*y)/(g1^5*g2^6) + (g3*t^7.17*y)/(g1^6*g2^5) + (g3^2*t^7.17*y)/(g1^7*g2^7) + 2*g1*g2*t^7.96*y + (2*g1^3*g2^2*t^7.96*y)/g3 + (2*g1^2*g2^3*t^7.96*y)/g3 + (2*g3*t^7.96*y)/g1 + (2*g3*t^7.96*y)/g2 - (t^8.21*y)/(g1^4*g2^6) - (3*t^8.21*y)/(g1^5*g2^5) - (t^8.21*y)/(g1^6*g2^4) - (t^8.21*y)/(g1*g2^3*g3^2) - (t^8.21*y)/(g1^2*g2^2*g3^2) - (t^8.21*y)/(g1^3*g2*g3^2) - (t^8.21*y)/(g1^3*g2^4*g3) - (t^8.21*y)/(g1^4*g2^3*g3) - (g3*t^8.21*y)/(g1^6*g2^7) - (g3*t^8.21*y)/(g1^7*g2^6) - (g3^2*t^8.21*y)/(g1^7*g2^9) - (g3^2*t^8.21*y)/(g1^8*g2^8) - (g3^2*t^8.21*y)/(g1^9*g2^7) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46097 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_2$ | 0.5735 | 0.7428 | 0.772 | [X:[], M:[1.0, 1.0, 0.7206, 0.7206], q:[0.2151, 0.7849], qb:[0.7849, 0.4945], phi:[0.4302]] | t^2.13 + 2*t^2.16 + 2*t^2.58 + 2*t^3. + t^3.42 + 2*t^4.26 + 2*t^4.29 + 3*t^4.32 + 3*t^4.71 + 4*t^4.74 + 2*t^5.13 + 6*t^5.16 + t^5.55 + 4*t^5.58 + t^6. - t^4.29/y - t^4.29*y | detail | |
46246 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ | 0.7101 | 0.9145 | 0.7765 | [X:[], M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.481, 0.827], qb:[0.827, 0.481], phi:[0.346]] | 6*t^2.08 + t^2.89 + 2*t^3.92 + 21*t^4.15 + 7*t^4.96 + t^5.77 + 3*t^6. - t^4.04/y - t^4.04*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45872 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ | 0.669 | 0.8353 | 0.8009 | [X:[], M:[0.7026, 0.6881, 0.6965], q:[0.4795, 0.8179], qb:[0.8324, 0.4712], phi:[0.3498]] | t^2.06 + t^2.09 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.88 + t^3.9 + t^3.93 + t^4.13 + t^4.15 + t^4.16 + t^4.17 + t^4.18 + t^4.19 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.92 + t^4.94 + 2*t^4.95 + t^4.96 + t^5.7 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.98 + t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y | detail |