Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45944 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ 0.6895 0.8743 0.7886 [M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.4789, 0.8263], qb:[0.8263, 0.4789], phi:[0.3474]] [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [-1, 0, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ 6 5*t^2.084 + t^2.873 + 3*t^3.916 + 15*t^4.169 + 6*t^4.958 + t^5.747 + 6*t^6. + 35*t^6.253 + 3*t^6.789 + 12*t^7.042 + 3*t^7.831 + t^8.084 + 70*t^8.337 + t^8.62 + t^8.873 - t^4.042/y - (5*t^6.127)/y + (10*t^7.169)/y + (10*t^7.958)/y - (15*t^8.211)/y - t^4.042*y - 5*t^6.127*y + 10*t^7.169*y + 10*t^7.958*y - 15*t^8.211*y t^2.084/(g1^2*g2^2) + t^2.084/(g1*g3) + t^2.084/(g2*g3) + (g3*t^2.084)/(g1^3*g2^4) + (g3*t^2.084)/(g1^4*g2^3) + g1^3*g2^3*t^2.873 + g1^2*g2^2*t^3.916 + (g1^5*g2^5*t^3.916)/g3^2 + (g3^2*t^3.916)/(g1*g2) + t^4.169/(g1^3*g2^5) + (3*t^4.169)/(g1^4*g2^4) + t^4.169/(g1^5*g2^3) + t^4.169/(g1^2*g3^2) + t^4.169/(g2^2*g3^2) + t^4.169/(g1*g2*g3^2) + t^4.169/(g1^2*g2^3*g3) + t^4.169/(g1^3*g2^2*g3) + (g3*t^4.169)/(g1^5*g2^6) + (g3*t^4.169)/(g1^6*g2^5) + (g3^2*t^4.169)/(g1^6*g2^8) + (g3^2*t^4.169)/(g1^7*g2^7) + (g3^2*t^4.169)/(g1^8*g2^6) + 2*g1*g2*t^4.958 + (g1^3*g2^2*t^4.958)/g3 + (g1^2*g2^3*t^4.958)/g3 + (g3*t^4.958)/g1 + (g3*t^4.958)/g2 + g1^6*g2^6*t^5.747 - 2*t^6. + (g1^5*g2^4*t^6.)/g3^3 + (g1^4*g2^5*t^6.)/g3^3 + (g1^2*g2*t^6.)/g3 + (g1*g2^2*t^6.)/g3 + (g3*t^6.)/(g1*g2^2) + (g3*t^6.)/(g1^2*g2) + (g3^3*t^6.)/(g1^4*g2^5) + (g3^3*t^6.)/(g1^5*g2^4) + t^6.253/(g1^5*g2^7) + (3*t^6.253)/(g1^6*g2^6) + t^6.253/(g1^7*g2^5) + t^6.253/(g1^3*g3^3) + t^6.253/(g2^3*g3^3) + t^6.253/(g1*g2^2*g3^3) + t^6.253/(g1^2*g2*g3^3) + t^6.253/(g1^2*g2^4*g3^2) + t^6.253/(g1^3*g2^3*g3^2) + t^6.253/(g1^4*g2^2*g3^2) + t^6.253/(g1^3*g2^6*g3) + (3*t^6.253)/(g1^4*g2^5*g3) + (3*t^6.253)/(g1^5*g2^4*g3) + t^6.253/(g1^6*g2^3*g3) + (g3*t^6.253)/(g1^6*g2^9) + (3*g3*t^6.253)/(g1^7*g2^8) + (3*g3*t^6.253)/(g1^8*g2^7) + (g3*t^6.253)/(g1^9*g2^6) + (g3^2*t^6.253)/(g1^8*g2^10) + (g3^2*t^6.253)/(g1^9*g2^9) + (g3^2*t^6.253)/(g1^10*g2^8) + (g3^3*t^6.253)/(g1^9*g2^12) + (g3^3*t^6.253)/(g1^10*g2^11) + (g3^3*t^6.253)/(g1^11*g2^10) + (g3^3*t^6.253)/(g1^12*g2^9) + g1^5*g2^5*t^6.789 + (g1^8*g2^8*t^6.789)/g3^2 + g1^2*g2^2*g3^2*t^6.789 + t^7.042/g1^2 + t^7.042/g2^2 + (2*t^7.042)/(g1*g2) + (g1^3*g2*t^7.042)/g3^2 + (g1*g2^3*t^7.042)/g3^2 + (g1*t^7.042)/g3 + (g2*t^7.042)/g3 + (g3*t^7.042)/(g1^2*g2^3) + (g3*t^7.042)/(g1^3*g2^2) + (g3^2*t^7.042)/(g1^3*g2^5) + (g3^2*t^7.042)/(g1^5*g2^3) + g1^4*g2^4*t^7.831 + (g1^10*g2^10*t^7.831)/g3^4 + (g3^4*t^7.831)/(g1^2*g2^2) + t^8.084/(g1*g2^3) - t^8.084/(g1^2*g2^2) + t^8.084/(g1^3*g2) + (g1^5*g2^3*t^8.084)/g3^4 + (g1^4*g2^4*t^8.084)/g3^4 + (g1^3*g2^5*t^8.084)/g3^4 + (g1^2*t^8.084)/g3^2 + (g1*g2*t^8.084)/g3^2 + (g2^2*t^8.084)/g3^2 - (3*t^8.084)/(g1*g3) - (3*t^8.084)/(g2*g3) - (3*g3*t^8.084)/(g1^3*g2^4) - (3*g3*t^8.084)/(g1^4*g2^3) + (g3^2*t^8.084)/(g1^4*g2^6) + (g3^2*t^8.084)/(g1^5*g2^5) + (g3^2*t^8.084)/(g1^6*g2^4) + (g3^4*t^8.084)/(g1^7*g2^9) + (g3^4*t^8.084)/(g1^8*g2^8) + (g3^4*t^8.084)/(g1^9*g2^7) + t^8.337/(g1^6*g2^10) + (3*t^8.337)/(g1^7*g2^9) + (6*t^8.337)/(g1^8*g2^8) + (3*t^8.337)/(g1^9*g2^7) + t^8.337/(g1^10*g2^6) + t^8.337/(g1^4*g3^4) + t^8.337/(g2^4*g3^4) + t^8.337/(g1*g2^3*g3^4) + t^8.337/(g1^2*g2^2*g3^4) + t^8.337/(g1^3*g2*g3^4) + t^8.337/(g1^2*g2^5*g3^3) + t^8.337/(g1^3*g2^4*g3^3) + t^8.337/(g1^4*g2^3*g3^3) + t^8.337/(g1^5*g2^2*g3^3) + t^8.337/(g1^3*g2^7*g3^2) + (3*t^8.337)/(g1^4*g2^6*g3^2) + (3*t^8.337)/(g1^5*g2^5*g3^2) + (3*t^8.337)/(g1^6*g2^4*g3^2) + t^8.337/(g1^7*g2^3*g3^2) + t^8.337/(g1^5*g2^8*g3) + (3*t^8.337)/(g1^6*g2^7*g3) + (3*t^8.337)/(g1^7*g2^6*g3) + t^8.337/(g1^8*g2^5*g3) + (g3*t^8.337)/(g1^8*g2^11) + (3*g3*t^8.337)/(g1^9*g2^10) + (3*g3*t^8.337)/(g1^10*g2^9) + (g3*t^8.337)/(g1^11*g2^8) + (g3^2*t^8.337)/(g1^9*g2^13) + (3*g3^2*t^8.337)/(g1^10*g2^12) + (3*g3^2*t^8.337)/(g1^11*g2^11) + (3*g3^2*t^8.337)/(g1^12*g2^10) + (g3^2*t^8.337)/(g1^13*g2^9) + (g3^3*t^8.337)/(g1^11*g2^14) + (g3^3*t^8.337)/(g1^12*g2^13) + (g3^3*t^8.337)/(g1^13*g2^12) + (g3^3*t^8.337)/(g1^14*g2^11) + (g3^4*t^8.337)/(g1^12*g2^16) + (g3^4*t^8.337)/(g1^13*g2^15) + (g3^4*t^8.337)/(g1^14*g2^14) + (g3^4*t^8.337)/(g1^15*g2^13) + (g3^4*t^8.337)/(g1^16*g2^12) + g1^9*g2^9*t^8.62 - 3*g1^3*g2^3*t^8.873 + (g1^8*g2^7*t^8.873)/g3^3 + (g1^7*g2^8*t^8.873)/g3^3 + (g3^3*t^8.873)/(g1*g2^2) + (g3^3*t^8.873)/(g1^2*g2) - t^4.042/(g1*g2*y) - t^6.127/(g1^3*g2^3*y) - t^6.127/(g1*g2^2*g3*y) - t^6.127/(g1^2*g2*g3*y) - (g3*t^6.127)/(g1^4*g2^5*y) - (g3*t^6.127)/(g1^5*g2^4*y) + t^7.169/(g1^3*g2^5*y) + (2*t^7.169)/(g1^4*g2^4*y) + t^7.169/(g1^5*g2^3*y) + t^7.169/(g1*g2*g3^2*y) + t^7.169/(g1^2*g2^3*g3*y) + t^7.169/(g1^3*g2^2*g3*y) + (g3*t^7.169)/(g1^5*g2^6*y) + (g3*t^7.169)/(g1^6*g2^5*y) + (g3^2*t^7.169)/(g1^7*g2^7*y) + (2*g1*g2*t^7.958)/y + (2*g1^3*g2^2*t^7.958)/(g3*y) + (2*g1^2*g2^3*t^7.958)/(g3*y) + (2*g3*t^7.958)/(g1*y) + (2*g3*t^7.958)/(g2*y) - t^8.211/(g1^4*g2^6*y) - (3*t^8.211)/(g1^5*g2^5*y) - t^8.211/(g1^6*g2^4*y) - t^8.211/(g1*g2^3*g3^2*y) - t^8.211/(g1^2*g2^2*g3^2*y) - t^8.211/(g1^3*g2*g3^2*y) - t^8.211/(g1^3*g2^4*g3*y) - t^8.211/(g1^4*g2^3*g3*y) - (g3*t^8.211)/(g1^6*g2^7*y) - (g3*t^8.211)/(g1^7*g2^6*y) - (g3^2*t^8.211)/(g1^7*g2^9*y) - (g3^2*t^8.211)/(g1^8*g2^8*y) - (g3^2*t^8.211)/(g1^9*g2^7*y) - (t^4.042*y)/(g1*g2) - (t^6.127*y)/(g1^3*g2^3) - (t^6.127*y)/(g1*g2^2*g3) - (t^6.127*y)/(g1^2*g2*g3) - (g3*t^6.127*y)/(g1^4*g2^5) - (g3*t^6.127*y)/(g1^5*g2^4) + (t^7.169*y)/(g1^3*g2^5) + (2*t^7.169*y)/(g1^4*g2^4) + (t^7.169*y)/(g1^5*g2^3) + (t^7.169*y)/(g1*g2*g3^2) + (t^7.169*y)/(g1^2*g2^3*g3) + (t^7.169*y)/(g1^3*g2^2*g3) + (g3*t^7.169*y)/(g1^5*g2^6) + (g3*t^7.169*y)/(g1^6*g2^5) + (g3^2*t^7.169*y)/(g1^7*g2^7) + 2*g1*g2*t^7.958*y + (2*g1^3*g2^2*t^7.958*y)/g3 + (2*g1^2*g2^3*t^7.958*y)/g3 + (2*g3*t^7.958*y)/g1 + (2*g3*t^7.958*y)/g2 - (t^8.211*y)/(g1^4*g2^6) - (3*t^8.211*y)/(g1^5*g2^5) - (t^8.211*y)/(g1^6*g2^4) - (t^8.211*y)/(g1*g2^3*g3^2) - (t^8.211*y)/(g1^2*g2^2*g3^2) - (t^8.211*y)/(g1^3*g2*g3^2) - (t^8.211*y)/(g1^3*g2^4*g3) - (t^8.211*y)/(g1^4*g2^3*g3) - (g3*t^8.211*y)/(g1^6*g2^7) - (g3*t^8.211*y)/(g1^7*g2^6) - (g3^2*t^8.211*y)/(g1^7*g2^9) - (g3^2*t^8.211*y)/(g1^8*g2^8) - (g3^2*t^8.211*y)/(g1^9*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46097 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ 0.5735 0.7428 0.772 [M:[1.0, 1.0, 0.7206, 0.7206], q:[0.2151, 0.7849], qb:[0.7849, 0.4945], phi:[0.4302]] t^2.129 + 2*t^2.162 + 2*t^2.581 + 2*t^3. + t^3.419 + 2*t^4.257 + 2*t^4.29 + 3*t^4.324 + 3*t^4.71 + 4*t^4.743 + 2*t^5.129 + 6*t^5.162 + t^5.548 + 4*t^5.581 + t^6. - t^4.29/y - t^4.29*y detail
46246 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ 0.7101 0.9145 0.7765 [M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.481, 0.827], qb:[0.827, 0.481], phi:[0.346]] 6*t^2.076 + t^2.886 + 2*t^3.924 + 21*t^4.152 + 7*t^4.962 + t^5.772 + 3*t^6. - t^4.038/y - t^4.038*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45872 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ 0.669 0.8353 0.8009 [M:[0.7026, 0.6881, 0.6965], q:[0.4795, 0.8179], qb:[0.8324, 0.4712], phi:[0.3498]] t^2.064 + t^2.089 + t^2.099 + t^2.108 + t^2.852 + t^3.867 + t^3.876 + t^3.901 + t^3.926 + t^4.129 + t^4.154 + t^4.163 + t^4.172 + t^4.179 + t^4.188 + 2*t^4.197 + t^4.206 + t^4.216 + t^4.916 + t^4.941 + 2*t^4.951 + t^4.96 + t^5.704 + t^5.931 + t^5.941 + t^5.956 + 2*t^5.966 + t^5.975 + t^5.984 + t^5.991 - 2*t^6. - t^4.049/y - t^4.049*y detail