Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
120 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ 0.669 0.8353 0.8009 [X:[], M:[0.6881, 0.7026, 0.6965], q:[0.835, 0.8152], qb:[0.4769, 0.4738], phi:[0.3498]] [X:[], M:[[1, -4, -1], [0, 1, -5], [0, -5, 1]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3^2$, $ M_3\phi_1^2$, $ M_2M_3$, $ \phi_1^4$, $ M_2\phi_1^2$, $ M_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 t^2.06 + t^2.09 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.88 + t^3.9 + t^3.93 + t^4.13 + t^4.15 + t^4.16 + t^4.17 + t^4.18 + t^4.19 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.92 + t^4.94 + 2*t^4.95 + t^4.96 + t^5.7 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.98 + t^5.99 - 2*t^6. + t^6.02 + t^6.19 + t^6.22 + t^6.23 + 2*t^6.24 + t^6.25 + 2*t^6.26 + 2*t^6.27 + 2*t^6.28 + 2*t^6.29 + 2*t^6.3 + 3*t^6.31 + t^6.32 + t^6.72 + t^6.73 + t^6.75 + t^6.78 + t^6.98 + t^7.01 + t^7.02 + t^7.03 + t^7.04 + t^7.05 + t^7.06 - t^7.08 + t^7.73 + t^7.74 + t^7.75 + t^7.77 + t^7.79 + t^7.8 - t^7.84 + t^7.85 + 2*t^8. + t^8.02 + 2*t^8.03 + t^8.04 + 2*t^8.05 + t^8.06 + t^8.07 + 2*t^8.08 - 2*t^8.09 - 2*t^8.1 - 2*t^8.11 - t^8.13 + t^8.26 + t^8.28 + t^8.29 + t^8.3 + t^8.31 + t^8.32 + 3*t^8.33 + 3*t^8.34 + 2*t^8.35 + 3*t^8.36 + 3*t^8.37 + 3*t^8.38 + 6*t^8.39 + 2*t^8.4 + 2*t^8.41 + t^8.42 + t^8.43 + t^8.56 + t^8.78 + t^8.79 + t^8.81 + 2*t^8.82 + t^8.83 + t^8.84 - 3*t^8.85 - t^8.86 + t^8.87 - t^8.89 - t^4.05/y - t^6.11/y - t^6.14/y - t^6.15/y - t^6.16/y + t^7.15/y + t^7.16/y + t^7.17/y + t^7.19/y + t^7.2/y + t^7.21/y + t^7.92/y + (2*t^7.94)/y + (2*t^7.95)/y + (2*t^7.96)/y + t^7.98/y - t^8.18/y - t^8.2/y - t^8.21/y - t^8.22/y - t^8.23/y - t^8.24/y - (2*t^8.25)/y - t^8.26/y - t^8.27/y + t^8.93/y + t^8.94/y + t^8.96/y + (5*t^8.97)/y + t^8.98/y + (2*t^8.99)/y - t^4.05*y - t^6.11*y - t^6.14*y - t^6.15*y - t^6.16*y + t^7.15*y + t^7.16*y + t^7.17*y + t^7.19*y + t^7.2*y + t^7.21*y + t^7.92*y + 2*t^7.94*y + 2*t^7.95*y + 2*t^7.96*y + t^7.98*y - t^8.18*y - t^8.2*y - t^8.21*y - t^8.22*y - t^8.23*y - t^8.24*y - 2*t^8.25*y - t^8.26*y - t^8.27*y + t^8.93*y + t^8.94*y + t^8.96*y + 5*t^8.97*y + t^8.98*y + 2*t^8.99*y (g1*t^2.06)/(g2^4*g3) + (g3*t^2.09)/g2^5 + t^2.1/(g2^2*g3^2) + (g2*t^2.11)/g3^5 + g2^3*g3^3*t^2.85 + g1*g3^3*t^3.87 + g1*g2^3*t^3.88 + g2^2*g3^2*t^3.9 + (g2*g3^4*t^3.93)/g1 + (g1^2*t^4.13)/(g2^8*g3^2) + (g1*t^4.15)/g2^9 + (g1*t^4.16)/(g2^6*g3^3) + (g1*t^4.17)/(g2^3*g3^6) + (g3^2*t^4.18)/g2^10 + t^4.19/(g2^7*g3) + (2*t^4.2)/(g2^4*g3^4) + t^4.21/(g2*g3^7) + (g2^2*t^4.22)/g3^10 + (g1*g3^2*t^4.92)/g2 + (g3^4*t^4.94)/g2^2 + 2*g2*g3*t^4.95 + (g2^4*t^4.96)/g3^2 + g2^6*g3^6*t^5.7 + (g1^2*g3^2*t^5.93)/g2^4 + (g1^2*t^5.94)/(g2*g3) + (g1*g3^4*t^5.96)/g2^5 + (g1*g2*t^5.97)/g3^2 + (2*g1*g3*t^5.97)/g2^2 + (g1*g2^4*t^5.98)/g3^5 + (g3^3*t^5.99)/g2^3 - 2*t^6. + (g3^5*t^6.02)/(g1*g2^4) + (g1^3*t^6.19)/(g2^12*g3^3) + (g1^2*t^6.22)/(g2^13*g3) + (g1^2*t^6.23)/(g2^10*g3^4) + (g1^2*t^6.24)/(g2^7*g3^7) + (g1*g3*t^6.24)/g2^14 + (g1*t^6.25)/(g2^11*g3^2) + (2*g1*t^6.26)/(g2^8*g3^5) + (g1*t^6.27)/(g2^5*g3^8) + (g3^3*t^6.27)/g2^15 + t^6.28/g2^12 + (g1*t^6.28)/(g2^2*g3^11) + (2*t^6.29)/(g2^9*g3^3) + (2*t^6.3)/(g2^6*g3^6) + t^6.31/g3^12 + (2*t^6.31)/(g2^3*g3^9) + (g2^3*t^6.32)/g3^15 + g1*g2^3*g3^6*t^6.72 + g1*g2^6*g3^3*t^6.73 + g2^5*g3^5*t^6.75 + (g2^4*g3^7*t^6.78)/g1 + (g1^2*g3*t^6.98)/g2^5 + (g1*g3^3*t^7.01)/g2^6 + (g1*t^7.02)/g2^3 + (g3^5*t^7.03)/g2^7 + (g3^2*t^7.04)/g2^4 + t^7.05/(g2*g3) + (g2^2*t^7.06)/g3^4 + (g2^5*t^7.07)/g3^7 - (g3*t^7.07)/(g1*g2^2) - (g2*t^7.08)/(g1*g3^2) + g1^2*g3^6*t^7.73 + g1^2*g2^3*g3^3*t^7.74 + g1^2*g2^6*t^7.75 + g1*g2^2*g3^5*t^7.77 + g2*g3^7*t^7.79 + g2^4*g3^4*t^7.8 - (g2^6*g3^3*t^7.84)/g1 + (g2^2*g3^8*t^7.85)/g1^2 + (g1^3*t^8.)/(g2^5*g3^2) + (g1^3*g3*t^8.)/g2^8 + (g1^2*g3^3*t^8.02)/g2^9 + (2*g1^2*t^8.03)/g2^6 + (g1^2*t^8.04)/(g2^3*g3^3) + (g1^2*t^8.05)/g3^6 + (g1*g3^5*t^8.05)/g2^10 - (g1*t^8.06)/(g2^4*g3) + (2*g1*g3^2*t^8.06)/g2^7 + (g1*t^8.07)/(g2*g3^4) + (g1*g2^2*t^8.08)/g3^7 + (g3^4*t^8.08)/g2^8 + (g1*g2^5*t^8.09)/g3^10 - (3*g3*t^8.09)/g2^5 - (2*t^8.1)/(g2^2*g3^2) - (3*g2*t^8.11)/g3^5 + (g3^6*t^8.11)/(g1*g2^9) - t^8.13/(g1*g3^3) + (g1^4*t^8.26)/(g2^16*g3^4) + (g1^3*t^8.28)/(g2^17*g3^2) + (g1^3*t^8.29)/(g2^14*g3^5) + (g1^3*t^8.3)/(g2^11*g3^8) + (g1^2*t^8.31)/g2^18 + (g1^2*t^8.32)/(g2^15*g3^3) + (2*g1^2*t^8.33)/(g2^12*g3^6) + (g1*g3^2*t^8.33)/g2^19 + (g1^2*t^8.34)/(g2^6*g3^12) + (g1^2*t^8.34)/(g2^9*g3^9) + (g1*t^8.34)/(g2^16*g3) + (2*g1*t^8.35)/(g2^13*g3^4) + (2*g1*t^8.36)/(g2^10*g3^7) + (g3^4*t^8.36)/g2^20 + (2*g1*t^8.37)/(g2^7*g3^10) + (g3*t^8.37)/g2^17 + (g1*t^8.38)/(g2^4*g3^13) + (2*t^8.38)/(g2^14*g3^2) + (g1*t^8.39)/(g2*g3^16) + (3*t^8.39)/(g2^8*g3^8) + (2*t^8.39)/(g2^11*g3^5) + (2*t^8.4)/(g2^5*g3^11) + (2*t^8.41)/(g2^2*g3^14) + (g2*t^8.42)/g3^17 + (g2^4*t^8.43)/g3^20 + g2^9*g3^9*t^8.56 + (g1^2*g3^5*t^8.78)/g2 + g1^2*g2^2*g3^2*t^8.79 + (g1*g3^7*t^8.81)/g2^2 + 2*g1*g2*g3^4*t^8.82 + g1*g2^4*g3*t^8.83 + (g1*g2^7*t^8.84)/g3^2 - 3*g2^3*g3^3*t^8.85 - g2^6*t^8.86 + (g3^8*t^8.87)/(g1*g2) - (g2^5*g3^2*t^8.89)/g1 - t^4.05/(g2*g3*y) - (g1*t^6.11)/(g2^5*g3^2*y) - t^6.14/(g2^6*y) - t^6.15/(g2^3*g3^3*y) - t^6.16/(g3^6*y) + (g1*t^7.15)/(g2^9*y) + (g1*t^7.16)/(g2^6*g3^3*y) + (g1*t^7.17)/(g2^3*g3^6*y) + t^7.19/(g2^7*g3*y) + t^7.2/(g2^4*g3^4*y) + t^7.21/(g2*g3^7*y) + (g1*g3^2*t^7.92)/(g2*y) + (2*g3^4*t^7.94)/(g2^2*y) + (2*g2*g3*t^7.95)/y + (2*g2^4*t^7.96)/(g3^2*y) + (g2^3*t^7.98)/(g1*y) - (g1^2*t^8.18)/(g2^9*g3^3*y) - (g1*t^8.2)/(g2^10*g3*y) - (g1*t^8.21)/(g2^7*g3^4*y) - (g1*t^8.22)/(g2^4*g3^7*y) - (g3*t^8.23)/(g2^11*y) - t^8.24/(g2^8*g3^2*y) - (2*t^8.25)/(g2^5*g3^5*y) - t^8.26/(g2^2*g3^8*y) - (g2*t^8.27)/(g3^11*y) + (g1^2*g3^2*t^8.93)/(g2^4*y) + (g1^2*t^8.94)/(g2*g3*y) + (g1*g3^4*t^8.96)/(g2^5*y) + (2*g1*g2*t^8.97)/(g3^2*y) + (3*g1*g3*t^8.97)/(g2^2*y) + (g1*g2^4*t^8.98)/(g3^5*y) + (2*g3^3*t^8.99)/(g2^3*y) - (t^4.05*y)/(g2*g3) - (g1*t^6.11*y)/(g2^5*g3^2) - (t^6.14*y)/g2^6 - (t^6.15*y)/(g2^3*g3^3) - (t^6.16*y)/g3^6 + (g1*t^7.15*y)/g2^9 + (g1*t^7.16*y)/(g2^6*g3^3) + (g1*t^7.17*y)/(g2^3*g3^6) + (t^7.19*y)/(g2^7*g3) + (t^7.2*y)/(g2^4*g3^4) + (t^7.21*y)/(g2*g3^7) + (g1*g3^2*t^7.92*y)/g2 + (2*g3^4*t^7.94*y)/g2^2 + 2*g2*g3*t^7.95*y + (2*g2^4*t^7.96*y)/g3^2 + (g2^3*t^7.98*y)/g1 - (g1^2*t^8.18*y)/(g2^9*g3^3) - (g1*t^8.2*y)/(g2^10*g3) - (g1*t^8.21*y)/(g2^7*g3^4) - (g1*t^8.22*y)/(g2^4*g3^7) - (g3*t^8.23*y)/g2^11 - (t^8.24*y)/(g2^8*g3^2) - (2*t^8.25*y)/(g2^5*g3^5) - (t^8.26*y)/(g2^2*g3^8) - (g2*t^8.27*y)/g3^11 + (g1^2*g3^2*t^8.93*y)/g2^4 + (g1^2*t^8.94*y)/(g2*g3) + (g1*g3^4*t^8.96*y)/g2^5 + (2*g1*g2*t^8.97*y)/g3^2 + (3*g1*g3*t^8.97*y)/g2^2 + (g1*g2^4*t^8.98*y)/g3^5 + (2*g3^3*t^8.99*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
193 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1M_3$ + $ M_2X_1$ 0.57 0.6943 0.8211 [X:[1.4099], M:[1.0, 0.5901, 1.0], q:[0.6988, 0.9037], qb:[0.3012, 0.5062], phi:[0.3975]] t^2.39 + t^2.42 + 2*t^3. + 3*t^3.61 + 2*t^4.23 + t^4.77 + 2*t^4.81 + t^4.84 + 2*t^5.42 + t^6. - t^4.19/y - t^4.19*y detail
194 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1\phi_1^2$ 0.5429 0.6874 0.7898 [X:[], M:[1.1258, 0.7766, 0.9719], q:[0.5787, 0.9842], qb:[0.2955, 0.3932], phi:[0.4371]] t^2.07 + t^2.33 + t^2.62 + 2*t^2.92 + 2*t^3.38 + t^3.84 + 2*t^4.13 + t^4.4 + t^4.66 + 2*t^4.69 + t^4.95 + 2*t^4.98 + 2*t^5.25 + 2*t^5.44 + t^5.54 + t^5.71 + 3*t^5.83 + t^5.9 - 2*t^6. - t^4.31/y - t^4.31*y detail
192 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1^2$ 0.6107 0.7595 0.8041 [X:[], M:[1.0, 0.6889, 0.8353], q:[0.6082, 1.0108], qb:[0.3918, 0.465], phi:[0.381]] t^2.07 + t^2.29 + t^2.51 + t^2.57 + t^3. + t^3.22 + t^3.71 + t^4.13 + t^4.21 + t^4.35 + t^4.43 + 2*t^4.57 + t^4.64 + t^4.79 + 2*t^4.86 + t^5.01 + t^5.07 + t^5.08 + t^5.14 + t^5.29 + t^5.51 + t^5.57 + t^5.73 + t^5.79 - t^6. - t^4.14/y - t^4.14*y detail
198 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_2M_4$ 0.6487 0.7983 0.8127 [X:[], M:[0.6881, 0.7271, 0.6881, 1.2729], q:[0.8329, 0.8133], qb:[0.4791, 0.4596], phi:[0.3538]] 2*t^2.06 + t^2.12 + t^2.82 + 2*t^3.82 + 3*t^3.88 + 3*t^4.13 + 2*t^4.19 + t^4.25 + 2*t^4.88 + 2*t^4.94 + t^5.63 + 4*t^5.88 + 6*t^5.94 - 2*t^6. - t^4.06/y - t^4.06*y detail
200 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ 0.6895 0.8749 0.7881 [X:[], M:[0.6857, 0.6986, 0.6931, 0.6959], q:[0.8349, 0.8172], qb:[0.4795, 0.4767], phi:[0.3479]] t^2.06 + t^2.08 + 2*t^2.09 + t^2.1 + t^2.87 + t^3.88 + t^3.89 + t^3.93 + t^4.11 + 3*t^4.14 + t^4.15 + t^4.16 + 2*t^4.17 + 6*t^4.18 + t^4.19 + t^4.93 + t^4.95 + 4*t^4.96 + t^5.74 + t^5.94 + t^5.95 + t^5.96 + 2*t^5.97 + 2*t^5.98 + t^5.99 - 3*t^6. - t^4.04/y - t^4.04*y detail
1712 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4q_1\tilde{q}_2$ 0.6897 0.8762 0.7872 [X:[], M:[0.6829, 0.6979, 0.6979, 0.6829], q:[0.8406, 0.8104], qb:[0.4765, 0.4765], phi:[0.349]] 2*t^2.05 + 3*t^2.09 + t^2.86 + 2*t^3.86 + t^3.91 + 3*t^4.1 + 6*t^4.14 + 6*t^4.19 + 2*t^4.91 + 4*t^4.95 + t^5.72 + 4*t^5.91 + 6*t^5.95 - 2*t^6. - t^4.05/y - t^4.05*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
76 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ 0.6485 0.7967 0.8141 [X:[], M:[0.696, 0.696], q:[0.837, 0.8106], qb:[0.467, 0.4758], phi:[0.3524]] 2*t^2.09 + t^2.11 + t^2.83 + t^3.83 + 2*t^3.86 + t^3.89 + t^3.94 + 3*t^4.18 + 2*t^4.2 + t^4.23 + 2*t^4.92 + 2*t^4.94 + t^5.66 + 2*t^5.92 + 4*t^5.95 + 2*t^5.97 - 2*t^6. - t^4.06/y - t^4.06*y detail