Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
374 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ | 0.7737 | 0.9544 | 0.8107 | [X:[], M:[0.812, 0.7498, 0.7801, 0.7817, 0.7498, 1.188], q:[0.5788, 0.6091], qb:[0.641, 0.6091], phi:[0.3905]] | [X:[], M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0], [4, 4, 0, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_1\tilde{q}_2$, $ M_5^2$, $ M_2^2$, $ M_2M_5$, $ M_3M_5$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_2M_3$, $ M_4M_5$, $ M_5\phi_1^2$, $ \phi_1q_1^2$, $ M_3^2$, $ M_3\phi_1^2$, $ M_4^2$, $ M_4\phi_1^2$, $ M_3M_4$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_5M_6$, $ M_2M_6$, $ M_5q_1\tilde{q}_2$, $ M_6\phi_1^2$, $ \phi_1^2q_1\tilde{q}_2$ | . | -6 | 2*t^2.25 + 2*t^2.34 + t^2.35 + 2*t^3.56 + 3*t^4.5 + 6*t^4.59 + t^4.64 + 2*t^4.68 + 4*t^4.69 + 2*t^4.74 + 4*t^4.83 + 2*t^4.92 + t^5.02 + 3*t^5.81 + 2*t^5.91 - 6*t^6. - 2*t^6.09 - 2*t^6.1 - t^6.19 + 4*t^6.75 + 9*t^6.84 + 2*t^6.89 + 4*t^6.93 + 8*t^6.94 + 4*t^6.98 + 2*t^6.99 + 2*t^7.02 + 7*t^7.03 + t^7.04 + 10*t^7.08 + 3*t^7.13 + 10*t^7.17 + t^7.18 + 2*t^7.26 + 2*t^7.27 - t^7.31 + 2*t^7.36 + 4*t^8.06 + 2*t^8.16 + 2*t^8.21 - 10*t^8.25 + 2*t^8.3 - 15*t^8.34 - 7*t^8.35 + 2*t^8.39 - 4*t^8.43 - 8*t^8.44 - 3*t^8.48 - 2*t^8.49 - 2*t^8.53 - 4*t^8.58 - 2*t^8.67 - t^4.17/y - (2*t^6.42)/y - (2*t^6.51)/y - t^6.52/y + t^7.5/y + (6*t^7.59)/y + t^7.68/y + (2*t^7.69)/y + (3*t^7.83)/y + (2*t^7.92)/y - (3*t^8.67)/y - (4*t^8.76)/y - (2*t^8.77)/y + (4*t^8.81)/y - (2*t^8.85)/y - (4*t^8.86)/y + (2*t^8.9)/y + (4*t^8.91)/y - t^4.17*y - 2*t^6.42*y - 2*t^6.51*y - t^6.52*y + t^7.5*y + 6*t^7.59*y + t^7.68*y + 2*t^7.69*y + 3*t^7.83*y + 2*t^7.92*y - 3*t^8.67*y - 4*t^8.76*y - 2*t^8.77*y + 4*t^8.81*y - 2*t^8.85*y - 4*t^8.86*y + 2*t^8.9*y + 4*t^8.91*y | t^2.25/(g2^4*g3^4) + t^2.25/(g3^4*g4^4) + t^2.34/(g1^4*g3^4) + t^2.34/(g1^2*g2^2*g3^2*g4^2) + t^2.35/(g2^4*g4^4) + g1^4*g2^4*t^3.56 + g1^4*g4^4*t^3.56 + t^4.5/(g2^8*g3^8) + t^4.5/(g3^8*g4^8) + t^4.5/(g2^4*g3^8*g4^4) + t^4.59/(g1^4*g2^4*g3^8) + t^4.59/(g2^4*g3^4*g4^8) + t^4.59/(g1^2*g2^2*g3^6*g4^6) + t^4.59/(g1^4*g3^8*g4^4) + t^4.59/(g2^8*g3^4*g4^4) + t^4.59/(g1^2*g2^6*g3^6*g4^2) + (g1^7*t^4.64)/(g2*g3*g4) + t^4.68/(g1^8*g3^8) + t^4.68/(g1^6*g2^2*g3^6*g4^2) + t^4.69/(g2^8*g4^8) + t^4.69/(g1^2*g2^6*g3^2*g4^6) + (2*t^4.69)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g2^3*t^4.74)/(g3*g4) + (g1^3*g4^3*t^4.74)/(g2*g3) + (g2^7*t^4.83)/(g1*g3*g4) + (g1^3*g3^3*t^4.83)/(g2*g4) + (g2^3*g4^3*t^4.83)/(g1*g3) + (g4^7*t^4.83)/(g1*g2*g3) + (g2^3*g3^3*t^4.92)/(g1*g4) + (g3^3*g4^3*t^4.92)/(g1*g2) + (g3^7*t^5.02)/(g1*g2*g4) + (g1^4*t^5.81)/g3^4 + (g1^4*g2^4*t^5.81)/(g3^4*g4^4) + (g1^4*g4^4*t^5.81)/(g2^4*g3^4) + (g1^2*g2^2*t^5.91)/(g3^2*g4^2) + (g1^2*g4^2*t^5.91)/(g2^2*g3^2) - 4*t^6. - (g2^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g2^4*t^6.09)/g1^4 - (g4^4*t^6.09)/g1^4 - (g3^4*t^6.1)/g2^4 - (g3^4*t^6.1)/g4^4 - (g3^4*t^6.19)/g1^4 + t^6.75/(g2^12*g3^12) + t^6.75/(g3^12*g4^12) + t^6.75/(g2^4*g3^12*g4^8) + t^6.75/(g2^8*g3^12*g4^4) + t^6.84/(g1^4*g2^8*g3^12) + t^6.84/(g2^4*g3^8*g4^12) + t^6.84/(g1^2*g2^2*g3^10*g4^10) + t^6.84/(g1^4*g3^12*g4^8) + t^6.84/(g2^8*g3^8*g4^8) + t^6.84/(g1^2*g2^6*g3^10*g4^6) + t^6.84/(g1^4*g2^4*g3^12*g4^4) + t^6.84/(g2^12*g3^8*g4^4) + t^6.84/(g1^2*g2^10*g3^10*g4^2) + (g1^7*t^6.89)/(g2*g3^5*g4^5) + (g1^7*t^6.89)/(g2^5*g3^5*g4) + t^6.93/(g1^8*g2^4*g3^12) + t^6.93/(g1^6*g2^2*g3^10*g4^6) + t^6.93/(g1^8*g3^12*g4^4) + t^6.93/(g1^6*g2^6*g3^10*g4^2) + t^6.94/(g2^8*g3^4*g4^12) + t^6.94/(g1^2*g2^6*g3^6*g4^10) + (2*t^6.94)/(g1^4*g2^4*g3^8*g4^8) + t^6.94/(g2^12*g3^4*g4^8) + t^6.94/(g1^2*g2^10*g3^6*g4^6) + (2*t^6.94)/(g1^4*g2^8*g3^8*g4^4) + (g1^3*g2^3*t^6.98)/(g3^5*g4^5) + (2*g1^3*t^6.98)/(g2*g3^5*g4) + (g1^3*g4^3*t^6.98)/(g2^5*g3^5) + (g1^7*t^6.99)/(g2^5*g3*g4^5) + (g1^5*t^6.99)/(g2^3*g3^3*g4^3) + t^7.02/(g1^12*g3^12) + t^7.02/(g1^10*g2^2*g3^10*g4^2) + t^7.03/(g1^2*g2^10*g3^2*g4^10) + (2*t^7.03)/(g1^4*g2^8*g3^4*g4^8) + (2*t^7.03)/(g1^6*g2^6*g3^6*g4^6) + (2*t^7.03)/(g1^8*g2^4*g3^8*g4^4) + t^7.04/(g2^12*g4^12) + (g2^7*t^7.08)/(g1*g3^5*g4^5) + (g1^3*t^7.08)/(g2*g3*g4^5) + (g1*g2*t^7.08)/(g3^3*g4^3) + (2*g2^3*t^7.08)/(g1*g3^5*g4) + (g1^3*t^7.08)/(g2^5*g3*g4) + (g1*g4*t^7.08)/(g2^3*g3^3) + (2*g4^3*t^7.08)/(g1*g2*g3^5) + (g4^7*t^7.08)/(g1*g2^5*g3^5) + g1^8*g2^8*t^7.13 + g1^8*g2^4*g4^4*t^7.13 + g1^8*g4^8*t^7.13 + (g2^3*t^7.17)/(g1*g3*g4^5) + (g2^5*t^7.17)/(g1^3*g3^3*g4^3) + (g1*g3*t^7.17)/(g2^3*g4^3) + (g2^7*t^7.17)/(g1^5*g3^5*g4) + t^7.17/(g1*g2*g3*g4) + (g2*g4*t^7.17)/(g1^3*g3^3) + (g2^3*g4^3*t^7.17)/(g1^5*g3^5) + (g4^3*t^7.17)/(g1*g2^5*g3) + (g4^5*t^7.17)/(g1^3*g2^3*g3^3) + (g4^7*t^7.17)/(g1^5*g2*g3^5) + (g1^3*g3^3*t^7.18)/(g2^5*g4^5) + (g2*g3*t^7.26)/(g1^3*g4^3) + (g3*g4*t^7.26)/(g1^3*g2^3) + (g3^3*t^7.27)/(g1*g2*g4^5) + (g3^3*t^7.27)/(g1*g2^5*g4) - g1^4*g2^4*g3^4*g4^4*t^7.31 + (g3^7*t^7.36)/(g1*g2^5*g4^5) + (g3^5*t^7.36)/(g1^3*g2^3*g4^3) + (g1^4*t^8.06)/(g2^4*g3^8) + (g1^4*g2^4*t^8.06)/(g3^8*g4^8) + (g1^4*t^8.06)/(g3^8*g4^4) + (g1^4*g4^4*t^8.06)/(g2^8*g3^8) + (g1^2*g2^2*t^8.16)/(g3^6*g4^6) - (g1^4*t^8.16)/(g2^4*g3^4*g4^4) + (g1^2*t^8.16)/(g2^2*g3^6*g4^2) + (g1^2*g4^2*t^8.16)/(g2^6*g3^6) + (g1^11*g2^3*t^8.21)/(g3*g4) + (g1^11*g4^3*t^8.21)/(g2*g3) - (4*t^8.25)/(g2^4*g3^4) - (g2^4*t^8.25)/(g3^4*g4^8) - (4*t^8.25)/(g3^4*g4^4) - (g4^4*t^8.25)/(g2^8*g3^4) + (g1^7*g2^7*t^8.3)/(g3*g4) - g1^9*g2*g3*g4*t^8.3 + (g1^7*g2^3*g4^3*t^8.3)/g3 + (g1^7*g4^7*t^8.3)/(g2*g3) - (5*t^8.34)/(g1^4*g3^4) - (g2^2*t^8.34)/(g1^2*g3^2*g4^6) - (2*g2^4*t^8.34)/(g1^4*g3^4*g4^4) - (4*t^8.34)/(g1^2*g2^2*g3^2*g4^2) - (g4^2*t^8.34)/(g1^2*g2^6*g3^2) - (2*g4^4*t^8.34)/(g1^4*g2^4*g3^4) - t^8.35/g2^8 - t^8.35/g4^8 - (5*t^8.35)/(g2^4*g4^4) + (g1^3*g2^11*t^8.39)/(g3*g4) - g1^5*g2^5*g3*g4*t^8.39 + (g1^3*g2^7*g4^3*t^8.39)/g3 - g1^5*g2*g3*g4^5*t^8.39 + (g1^3*g2^3*g4^7*t^8.39)/g3 + (g1^3*g4^11*t^8.39)/(g2*g3) - (g2^4*t^8.43)/(g1^8*g3^4) - (g2^2*t^8.43)/(g1^6*g3^2*g4^2) - (g4^2*t^8.43)/(g1^6*g2^2*g3^2) - (g4^4*t^8.43)/(g1^8*g3^4) - (2*t^8.44)/(g1^4*g2^4) - (g3^4*t^8.44)/(g2^4*g4^8) - (g3^2*t^8.44)/(g1^2*g2^2*g4^6) - (2*t^8.44)/(g1^4*g4^4) - (g3^4*t^8.44)/(g2^8*g4^4) - (g3^2*t^8.44)/(g1^2*g2^6*g4^2) - g1*g2^9*g3*g4*t^8.48 - g1*g2^5*g3*g4^5*t^8.48 - g1*g2*g3*g4^9*t^8.48 - g1^5*g2*g3^5*g4*t^8.49 - g1^3*g2^3*g3^3*g4^3*t^8.49 - (g3^4*t^8.53)/(g1^4*g2^4*g4^4) - (g3^2*t^8.53)/(g1^6*g2^2*g4^2) - g1*g2^5*g3^5*g4*t^8.58 - (g2^7*g3^3*g4^3*t^8.58)/g1 - g1*g2*g3^5*g4^5*t^8.58 - (g2^3*g3^3*g4^7*t^8.58)/g1 - g1*g2*g3^9*g4*t^8.67 - (g2^3*g3^7*g4^3*t^8.67)/g1 - t^4.17/(g1*g2*g3*g4*y) - t^6.42/(g1*g2*g3^5*g4^5*y) - t^6.42/(g1*g2^5*g3^5*g4*y) - t^6.51/(g1^3*g2^3*g3^3*g4^3*y) - t^6.51/(g1^5*g2*g3^5*g4*y) - t^6.52/(g1*g2^5*g3*g4^5*y) + t^7.5/(g2^4*g3^8*g4^4*y) + t^7.59/(g1^4*g2^4*g3^8*y) + t^7.59/(g2^4*g3^4*g4^8*y) + t^7.59/(g1^2*g2^2*g3^6*g4^6*y) + t^7.59/(g1^4*g3^8*g4^4*y) + t^7.59/(g2^8*g3^4*g4^4*y) + t^7.59/(g1^2*g2^6*g3^6*g4^2*y) + t^7.68/(g1^6*g2^2*g3^6*g4^2*y) + t^7.69/(g1^2*g2^6*g3^2*g4^6*y) + t^7.69/(g1^4*g2^4*g3^4*g4^4*y) + (g1^3*g3^3*t^7.83)/(g2*g4*y) + (g1*g2*g3*g4*t^7.83)/y + (g2^3*g4^3*t^7.83)/(g1*g3*y) + (g2^3*g3^3*t^7.92)/(g1*g4*y) + (g3^3*g4^3*t^7.92)/(g1*g2*y) - t^8.67/(g1*g2*g3^9*g4^9*y) - t^8.67/(g1*g2^5*g3^9*g4^5*y) - t^8.67/(g1*g2^9*g3^9*g4*y) - t^8.76/(g1^3*g2^3*g3^7*g4^7*y) - t^8.76/(g1^5*g2*g3^9*g4^5*y) - t^8.76/(g1^3*g2^7*g3^7*g4^3*y) - t^8.76/(g1^5*g2^5*g3^9*g4*y) - t^8.77/(g1*g2^5*g3^5*g4^9*y) - t^8.77/(g1*g2^9*g3^5*g4^5*y) + (2*g1^4*t^8.81)/(g3^4*y) + (g1^4*g2^4*t^8.81)/(g3^4*g4^4*y) + (g1^4*g4^4*t^8.81)/(g2^4*g3^4*y) - t^8.85/(g1^7*g2^3*g3^7*g4^3*y) - t^8.85/(g1^9*g2*g3^9*g4*y) - t^8.86/(g1*g2^9*g3*g4^9*y) - t^8.86/(g1^3*g2^7*g3^3*g4^7*y) - (2*t^8.86)/(g1^5*g2^5*g3^5*g4^5*y) + (g2^4*t^8.9)/(g3^4*y) + (g4^4*t^8.9)/(g3^4*y) + (g1^4*t^8.91)/(g2^4*y) + (g1^4*t^8.91)/(g4^4*y) + (g1^2*g2^2*t^8.91)/(g3^2*g4^2*y) + (g1^2*g4^2*t^8.91)/(g2^2*g3^2*y) - (t^4.17*y)/(g1*g2*g3*g4) - (t^6.42*y)/(g1*g2*g3^5*g4^5) - (t^6.42*y)/(g1*g2^5*g3^5*g4) - (t^6.51*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.51*y)/(g1^5*g2*g3^5*g4) - (t^6.52*y)/(g1*g2^5*g3*g4^5) + (t^7.5*y)/(g2^4*g3^8*g4^4) + (t^7.59*y)/(g1^4*g2^4*g3^8) + (t^7.59*y)/(g2^4*g3^4*g4^8) + (t^7.59*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.59*y)/(g1^4*g3^8*g4^4) + (t^7.59*y)/(g2^8*g3^4*g4^4) + (t^7.59*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.68*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.69*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.69*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g3^3*t^7.83*y)/(g2*g4) + g1*g2*g3*g4*t^7.83*y + (g2^3*g4^3*t^7.83*y)/(g1*g3) + (g2^3*g3^3*t^7.92*y)/(g1*g4) + (g3^3*g4^3*t^7.92*y)/(g1*g2) - (t^8.67*y)/(g1*g2*g3^9*g4^9) - (t^8.67*y)/(g1*g2^5*g3^9*g4^5) - (t^8.67*y)/(g1*g2^9*g3^9*g4) - (t^8.76*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.76*y)/(g1^5*g2*g3^9*g4^5) - (t^8.76*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.76*y)/(g1^5*g2^5*g3^9*g4) - (t^8.77*y)/(g1*g2^5*g3^5*g4^9) - (t^8.77*y)/(g1*g2^9*g3^5*g4^5) + (2*g1^4*t^8.81*y)/g3^4 + (g1^4*g2^4*t^8.81*y)/(g3^4*g4^4) + (g1^4*g4^4*t^8.81*y)/(g2^4*g3^4) - (t^8.85*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.85*y)/(g1^9*g2*g3^9*g4) - (t^8.86*y)/(g1*g2^9*g3*g4^9) - (t^8.86*y)/(g1^3*g2^7*g3^3*g4^7) - (2*t^8.86*y)/(g1^5*g2^5*g3^5*g4^5) + (g2^4*t^8.9*y)/g3^4 + (g4^4*t^8.9*y)/g3^4 + (g1^4*t^8.91*y)/g2^4 + (g1^4*t^8.91*y)/g4^4 + (g1^2*g2^2*t^8.91*y)/(g3^2*g4^2) + (g1^2*g4^2*t^8.91*y)/(g2^2*g3^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
613 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_3M_7$ | 0.7576 | 0.9264 | 0.8177 | [X:[], M:[0.8355, 0.7673, 0.8355, 0.7673, 0.7673, 1.1645, 1.1645], q:[0.5482, 0.6164], qb:[0.6164, 0.6164], phi:[0.4007]] | 3*t^2.3 + t^2.4 + 3*t^3.49 + t^4.49 + 6*t^4.6 + 3*t^4.7 + 3*t^4.71 + t^4.81 + 6*t^4.9 + 6*t^5.8 + 3*t^5.9 - 10*t^6. - t^4.2/y - t^4.2*y | detail | |
614 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ | 0.7577 | 0.9271 | 0.8174 | [X:[], M:[0.8388, 0.7655, 0.7655, 0.8388, 0.7655, 1.1612, 1.1612], q:[0.5806, 0.5806], qb:[0.6539, 0.5806], phi:[0.4011]] | 3*t^2.3 + t^2.41 + 3*t^3.48 + 6*t^4.59 + 6*t^4.69 + 3*t^4.7 + t^4.81 + 3*t^4.91 + t^5.13 + 6*t^5.78 + 3*t^5.89 - 10*t^6. - t^4.2/y - t^4.2*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
230 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ | 0.791 | 0.9858 | 0.8024 | [X:[], M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] | t^2.21 + 5*t^2.29 + t^3.62 + t^4.42 + 5*t^4.51 + 15*t^4.59 + 3*t^4.77 + 4*t^4.85 + 3*t^4.94 + t^5.84 + t^5.92 - 8*t^6. - t^4.15/y - t^4.15*y | detail |