Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
374 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ | 0.7737 | 0.9544 | 0.8107 | [M:[0.812, 0.7498, 0.7801, 0.7817, 0.7498, 1.188], q:[0.5788, 0.6091], qb:[0.641, 0.6091], phi:[0.3905]] | [M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0], [4, 4, 0, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{6}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ | ${}$ | -6 | 2*t^2.249 + t^2.34 + t^2.343 + t^2.345 + 2*t^3.564 + 3*t^4.499 + 2*t^4.59 + 2*t^4.592 + 2*t^4.595 + t^4.644 + t^4.681 + t^4.683 + 2*t^4.686 + t^4.688 + t^4.69 + 2*t^4.735 + 3*t^4.826 + t^4.831 + 2*t^4.922 + t^5.018 + 3*t^5.813 + 2*t^5.907 - 6*t^6. - 2*t^6.091 - 2*t^6.096 - t^6.187 + 4*t^6.748 + 3*t^6.839 + 3*t^6.842 + 3*t^6.844 + 2*t^6.894 + 2*t^6.93 + 2*t^6.933 + 4*t^6.935 + 2*t^6.937 + 2*t^6.94 + 4*t^6.985 + t^6.987 + t^6.99 + t^7.021 + t^7.024 + 2*t^7.026 + 2*t^7.028 + 2*t^7.031 + t^7.033 + t^7.036 + 6*t^7.076 + 2*t^7.078 + 2*t^7.08 + 3*t^7.128 + 3*t^7.167 + 3*t^7.169 + 3*t^7.171 + t^7.174 + t^7.176 + 2*t^7.265 + 2*t^7.267 - t^7.314 + t^7.36 + t^7.363 + 4*t^8.063 + 3*t^8.156 - t^8.159 + 2*t^8.208 - 10*t^8.249 + 3*t^8.299 - t^8.302 - 9*t^8.34 - 6*t^8.343 - 7*t^8.345 + 4*t^8.39 - 2*t^8.393 - 2*t^8.431 - 2*t^8.434 - 4*t^8.436 - 2*t^8.438 - 2*t^8.441 - 3*t^8.483 - t^8.486 - t^8.488 - t^8.529 - t^8.532 - 2*t^8.577 - 2*t^8.579 - t^8.672 - t^8.675 + 5*t^8.998 - t^4.171/y - (2*t^6.421)/y - t^6.512/y - t^6.514/y - t^6.517/y + t^7.499/y + (2*t^7.59)/y + (2*t^7.592)/y + (2*t^7.595)/y + t^7.683/y + t^7.686/y + t^7.688/y + t^7.826/y + t^7.829/y + t^7.831/y + (2*t^7.922)/y - (3*t^8.67)/y - (2*t^8.761)/y - (2*t^8.764)/y - (2*t^8.766)/y + (4*t^8.813)/y - t^8.852/y - t^8.855/y - (2*t^8.857)/y - t^8.859/y - t^8.862/y + (2*t^8.904)/y + (2*t^8.907)/y + (2*t^8.909)/y - t^4.171*y - 2*t^6.421*y - t^6.512*y - t^6.514*y - t^6.517*y + t^7.499*y + 2*t^7.59*y + 2*t^7.592*y + 2*t^7.595*y + t^7.683*y + t^7.686*y + t^7.688*y + t^7.826*y + t^7.829*y + t^7.831*y + 2*t^7.922*y - 3*t^8.67*y - 2*t^8.761*y - 2*t^8.764*y - 2*t^8.766*y + 4*t^8.813*y - t^8.852*y - t^8.855*y - 2*t^8.857*y - t^8.859*y - t^8.862*y + 2*t^8.904*y + 2*t^8.907*y + 2*t^8.909*y | t^2.249/(g2^4*g3^4) + t^2.249/(g3^4*g4^4) + t^2.34/(g1^4*g3^4) + t^2.343/(g1^2*g2^2*g3^2*g4^2) + t^2.345/(g2^4*g4^4) + g1^4*g2^4*t^3.564 + g1^4*g4^4*t^3.564 + t^4.499/(g2^8*g3^8) + t^4.499/(g3^8*g4^8) + t^4.499/(g2^4*g3^8*g4^4) + t^4.59/(g1^4*g2^4*g3^8) + t^4.59/(g1^4*g3^8*g4^4) + t^4.592/(g1^2*g2^2*g3^6*g4^6) + t^4.592/(g1^2*g2^6*g3^6*g4^2) + t^4.595/(g2^4*g3^4*g4^8) + t^4.595/(g2^8*g3^4*g4^4) + (g1^7*t^4.644)/(g2*g3*g4) + t^4.681/(g1^8*g3^8) + t^4.683/(g1^6*g2^2*g3^6*g4^2) + (2*t^4.686)/(g1^4*g2^4*g3^4*g4^4) + t^4.688/(g1^2*g2^6*g3^2*g4^6) + t^4.69/(g2^8*g4^8) + (g1^3*g2^3*t^4.735)/(g3*g4) + (g1^3*g4^3*t^4.735)/(g2*g3) + (g2^7*t^4.826)/(g1*g3*g4) + (g2^3*g4^3*t^4.826)/(g1*g3) + (g4^7*t^4.826)/(g1*g2*g3) + (g1^3*g3^3*t^4.831)/(g2*g4) + (g2^3*g3^3*t^4.922)/(g1*g4) + (g3^3*g4^3*t^4.922)/(g1*g2) + (g3^7*t^5.018)/(g1*g2*g4) + (g1^4*t^5.813)/g3^4 + (g1^4*g2^4*t^5.813)/(g3^4*g4^4) + (g1^4*g4^4*t^5.813)/(g2^4*g3^4) + (g1^2*g2^2*t^5.907)/(g3^2*g4^2) + (g1^2*g4^2*t^5.907)/(g2^2*g3^2) - 4*t^6. - (g2^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g2^4*t^6.091)/g1^4 - (g4^4*t^6.091)/g1^4 - (g3^4*t^6.096)/g2^4 - (g3^4*t^6.096)/g4^4 - (g3^4*t^6.187)/g1^4 + t^6.748/(g2^12*g3^12) + t^6.748/(g3^12*g4^12) + t^6.748/(g2^4*g3^12*g4^8) + t^6.748/(g2^8*g3^12*g4^4) + t^6.839/(g1^4*g2^8*g3^12) + t^6.839/(g1^4*g3^12*g4^8) + t^6.839/(g1^4*g2^4*g3^12*g4^4) + t^6.842/(g1^2*g2^2*g3^10*g4^10) + t^6.842/(g1^2*g2^6*g3^10*g4^6) + t^6.842/(g1^2*g2^10*g3^10*g4^2) + t^6.844/(g2^4*g3^8*g4^12) + t^6.844/(g2^8*g3^8*g4^8) + t^6.844/(g2^12*g3^8*g4^4) + (g1^7*t^6.894)/(g2*g3^5*g4^5) + (g1^7*t^6.894)/(g2^5*g3^5*g4) + t^6.93/(g1^8*g2^4*g3^12) + t^6.93/(g1^8*g3^12*g4^4) + t^6.933/(g1^6*g2^2*g3^10*g4^6) + t^6.933/(g1^6*g2^6*g3^10*g4^2) + (2*t^6.935)/(g1^4*g2^4*g3^8*g4^8) + (2*t^6.935)/(g1^4*g2^8*g3^8*g4^4) + t^6.937/(g1^2*g2^6*g3^6*g4^10) + t^6.937/(g1^2*g2^10*g3^6*g4^6) + t^6.94/(g2^8*g3^4*g4^12) + t^6.94/(g2^12*g3^4*g4^8) + (g1^3*g2^3*t^6.985)/(g3^5*g4^5) + (2*g1^3*t^6.985)/(g2*g3^5*g4) + (g1^3*g4^3*t^6.985)/(g2^5*g3^5) + (g1^5*t^6.987)/(g2^3*g3^3*g4^3) + (g1^7*t^6.99)/(g2^5*g3*g4^5) + t^7.021/(g1^12*g3^12) + t^7.024/(g1^10*g2^2*g3^10*g4^2) + (2*t^7.026)/(g1^8*g2^4*g3^8*g4^4) + (2*t^7.028)/(g1^6*g2^6*g3^6*g4^6) + (2*t^7.031)/(g1^4*g2^8*g3^4*g4^8) + t^7.033/(g1^2*g2^10*g3^2*g4^10) + t^7.036/(g2^12*g4^12) + (g2^7*t^7.076)/(g1*g3^5*g4^5) + (2*g2^3*t^7.076)/(g1*g3^5*g4) + (2*g4^3*t^7.076)/(g1*g2*g3^5) + (g4^7*t^7.076)/(g1*g2^5*g3^5) + (g1*g2*t^7.078)/(g3^3*g4^3) + (g1*g4*t^7.078)/(g2^3*g3^3) + (g1^3*t^7.08)/(g2*g3*g4^5) + (g1^3*t^7.08)/(g2^5*g3*g4) + g1^8*g2^8*t^7.128 + g1^8*g2^4*g4^4*t^7.128 + g1^8*g4^8*t^7.128 + (g2^7*t^7.167)/(g1^5*g3^5*g4) + (g2^3*g4^3*t^7.167)/(g1^5*g3^5) + (g4^7*t^7.167)/(g1^5*g2*g3^5) + (g2^5*t^7.169)/(g1^3*g3^3*g4^3) + (g2*g4*t^7.169)/(g1^3*g3^3) + (g4^5*t^7.169)/(g1^3*g2^3*g3^3) + (g2^3*t^7.171)/(g1*g3*g4^5) + t^7.171/(g1*g2*g3*g4) + (g4^3*t^7.171)/(g1*g2^5*g3) + (g1*g3*t^7.174)/(g2^3*g4^3) + (g1^3*g3^3*t^7.176)/(g2^5*g4^5) + (g2*g3*t^7.265)/(g1^3*g4^3) + (g3*g4*t^7.265)/(g1^3*g2^3) + (g3^3*t^7.267)/(g1*g2*g4^5) + (g3^3*t^7.267)/(g1*g2^5*g4) - g1^4*g2^4*g3^4*g4^4*t^7.314 + (g3^5*t^7.36)/(g1^3*g2^3*g4^3) + (g3^7*t^7.363)/(g1*g2^5*g4^5) + (g1^4*t^8.063)/(g2^4*g3^8) + (g1^4*g2^4*t^8.063)/(g3^8*g4^8) + (g1^4*t^8.063)/(g3^8*g4^4) + (g1^4*g4^4*t^8.063)/(g2^8*g3^8) + (g1^2*g2^2*t^8.156)/(g3^6*g4^6) + (g1^2*t^8.156)/(g2^2*g3^6*g4^2) + (g1^2*g4^2*t^8.156)/(g2^6*g3^6) - (g1^4*t^8.159)/(g2^4*g3^4*g4^4) + (g1^11*g2^3*t^8.208)/(g3*g4) + (g1^11*g4^3*t^8.208)/(g2*g3) - (4*t^8.249)/(g2^4*g3^4) - (g2^4*t^8.249)/(g3^4*g4^8) - (4*t^8.249)/(g3^4*g4^4) - (g4^4*t^8.249)/(g2^8*g3^4) + (g1^7*g2^7*t^8.299)/(g3*g4) + (g1^7*g2^3*g4^3*t^8.299)/g3 + (g1^7*g4^7*t^8.299)/(g2*g3) - g1^9*g2*g3*g4*t^8.302 - (5*t^8.34)/(g1^4*g3^4) - (2*g2^4*t^8.34)/(g1^4*g3^4*g4^4) - (2*g4^4*t^8.34)/(g1^4*g2^4*g3^4) - (g2^2*t^8.343)/(g1^2*g3^2*g4^6) - (4*t^8.343)/(g1^2*g2^2*g3^2*g4^2) - (g4^2*t^8.343)/(g1^2*g2^6*g3^2) - t^8.345/g2^8 - t^8.345/g4^8 - (5*t^8.345)/(g2^4*g4^4) + (g1^3*g2^11*t^8.39)/(g3*g4) + (g1^3*g2^7*g4^3*t^8.39)/g3 + (g1^3*g2^3*g4^7*t^8.39)/g3 + (g1^3*g4^11*t^8.39)/(g2*g3) - g1^5*g2^5*g3*g4*t^8.393 - g1^5*g2*g3*g4^5*t^8.393 - (g2^4*t^8.431)/(g1^8*g3^4) - (g4^4*t^8.431)/(g1^8*g3^4) - (g2^2*t^8.434)/(g1^6*g3^2*g4^2) - (g4^2*t^8.434)/(g1^6*g2^2*g3^2) - (2*t^8.436)/(g1^4*g2^4) - (2*t^8.436)/(g1^4*g4^4) - (g3^2*t^8.438)/(g1^2*g2^2*g4^6) - (g3^2*t^8.438)/(g1^2*g2^6*g4^2) - (g3^4*t^8.441)/(g2^4*g4^8) - (g3^4*t^8.441)/(g2^8*g4^4) - g1*g2^9*g3*g4*t^8.483 - g1*g2^5*g3*g4^5*t^8.483 - g1*g2*g3*g4^9*t^8.483 - g1^3*g2^3*g3^3*g4^3*t^8.486 - g1^5*g2*g3^5*g4*t^8.488 - (g3^2*t^8.529)/(g1^6*g2^2*g4^2) - (g3^4*t^8.532)/(g1^4*g2^4*g4^4) - (g2^7*g3^3*g4^3*t^8.577)/g1 - (g2^3*g3^3*g4^7*t^8.577)/g1 - g1*g2^5*g3^5*g4*t^8.579 - g1*g2*g3^5*g4^5*t^8.579 - (g2^3*g3^7*g4^3*t^8.672)/g1 - g1*g2*g3^9*g4*t^8.675 + t^8.998/(g2^16*g3^16) + t^8.998/(g3^16*g4^16) + t^8.998/(g2^4*g3^16*g4^12) + t^8.998/(g2^8*g3^16*g4^8) + t^8.998/(g2^12*g3^16*g4^4) - t^4.171/(g1*g2*g3*g4*y) - t^6.421/(g1*g2*g3^5*g4^5*y) - t^6.421/(g1*g2^5*g3^5*g4*y) - t^6.512/(g1^5*g2*g3^5*g4*y) - t^6.514/(g1^3*g2^3*g3^3*g4^3*y) - t^6.517/(g1*g2^5*g3*g4^5*y) + t^7.499/(g2^4*g3^8*g4^4*y) + t^7.59/(g1^4*g2^4*g3^8*y) + t^7.59/(g1^4*g3^8*g4^4*y) + t^7.592/(g1^2*g2^2*g3^6*g4^6*y) + t^7.592/(g1^2*g2^6*g3^6*g4^2*y) + t^7.595/(g2^4*g3^4*g4^8*y) + t^7.595/(g2^8*g3^4*g4^4*y) + t^7.683/(g1^6*g2^2*g3^6*g4^2*y) + t^7.686/(g1^4*g2^4*g3^4*g4^4*y) + t^7.688/(g1^2*g2^6*g3^2*g4^6*y) + (g2^3*g4^3*t^7.826)/(g1*g3*y) + (g1*g2*g3*g4*t^7.829)/y + (g1^3*g3^3*t^7.831)/(g2*g4*y) + (g2^3*g3^3*t^7.922)/(g1*g4*y) + (g3^3*g4^3*t^7.922)/(g1*g2*y) - t^8.67/(g1*g2*g3^9*g4^9*y) - t^8.67/(g1*g2^5*g3^9*g4^5*y) - t^8.67/(g1*g2^9*g3^9*g4*y) - t^8.761/(g1^5*g2*g3^9*g4^5*y) - t^8.761/(g1^5*g2^5*g3^9*g4*y) - t^8.764/(g1^3*g2^3*g3^7*g4^7*y) - t^8.764/(g1^3*g2^7*g3^7*g4^3*y) - t^8.766/(g1*g2^5*g3^5*g4^9*y) - t^8.766/(g1*g2^9*g3^5*g4^5*y) + (2*g1^4*t^8.813)/(g3^4*y) + (g1^4*g2^4*t^8.813)/(g3^4*g4^4*y) + (g1^4*g4^4*t^8.813)/(g2^4*g3^4*y) - t^8.852/(g1^9*g2*g3^9*g4*y) - t^8.855/(g1^7*g2^3*g3^7*g4^3*y) - (2*t^8.857)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.859/(g1^3*g2^7*g3^3*g4^7*y) - t^8.862/(g1*g2^9*g3*g4^9*y) + (g2^4*t^8.904)/(g3^4*y) + (g4^4*t^8.904)/(g3^4*y) + (g1^2*g2^2*t^8.907)/(g3^2*g4^2*y) + (g1^2*g4^2*t^8.907)/(g2^2*g3^2*y) + (g1^4*t^8.909)/(g2^4*y) + (g1^4*t^8.909)/(g4^4*y) - (t^4.171*y)/(g1*g2*g3*g4) - (t^6.421*y)/(g1*g2*g3^5*g4^5) - (t^6.421*y)/(g1*g2^5*g3^5*g4) - (t^6.512*y)/(g1^5*g2*g3^5*g4) - (t^6.514*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.517*y)/(g1*g2^5*g3*g4^5) + (t^7.499*y)/(g2^4*g3^8*g4^4) + (t^7.59*y)/(g1^4*g2^4*g3^8) + (t^7.59*y)/(g1^4*g3^8*g4^4) + (t^7.592*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.592*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.595*y)/(g2^4*g3^4*g4^8) + (t^7.595*y)/(g2^8*g3^4*g4^4) + (t^7.683*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.686*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.688*y)/(g1^2*g2^6*g3^2*g4^6) + (g2^3*g4^3*t^7.826*y)/(g1*g3) + g1*g2*g3*g4*t^7.829*y + (g1^3*g3^3*t^7.831*y)/(g2*g4) + (g2^3*g3^3*t^7.922*y)/(g1*g4) + (g3^3*g4^3*t^7.922*y)/(g1*g2) - (t^8.67*y)/(g1*g2*g3^9*g4^9) - (t^8.67*y)/(g1*g2^5*g3^9*g4^5) - (t^8.67*y)/(g1*g2^9*g3^9*g4) - (t^8.761*y)/(g1^5*g2*g3^9*g4^5) - (t^8.761*y)/(g1^5*g2^5*g3^9*g4) - (t^8.764*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.764*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.766*y)/(g1*g2^5*g3^5*g4^9) - (t^8.766*y)/(g1*g2^9*g3^5*g4^5) + (2*g1^4*t^8.813*y)/g3^4 + (g1^4*g2^4*t^8.813*y)/(g3^4*g4^4) + (g1^4*g4^4*t^8.813*y)/(g2^4*g3^4) - (t^8.852*y)/(g1^9*g2*g3^9*g4) - (t^8.855*y)/(g1^7*g2^3*g3^7*g4^3) - (2*t^8.857*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.859*y)/(g1^3*g2^7*g3^3*g4^7) - (t^8.862*y)/(g1*g2^9*g3*g4^9) + (g2^4*t^8.904*y)/g3^4 + (g4^4*t^8.904*y)/g3^4 + (g1^2*g2^2*t^8.907*y)/(g3^2*g4^2) + (g1^2*g4^2*t^8.907*y)/(g2^2*g3^2) + (g1^4*t^8.909*y)/g2^4 + (g1^4*t^8.909*y)/g4^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
613 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ + ${ }M_{3}M_{7}$ | 0.7576 | 0.9264 | 0.8177 | [M:[0.8355, 0.7673, 0.8355, 0.7673, 0.7673, 1.1645, 1.1645], q:[0.5482, 0.6164], qb:[0.6164, 0.6164], phi:[0.4007]] | 3*t^2.302 + t^2.404 + 3*t^3.494 + t^4.491 + 6*t^4.604 + 3*t^4.696 + 3*t^4.706 + t^4.808 + 6*t^4.9 + 6*t^5.795 + 3*t^5.898 - 10*t^6. - t^4.202/y - t^4.202*y | detail | |
614 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ + ${ }M_{4}M_{7}$ | 0.7577 | 0.9271 | 0.8174 | [M:[0.8388, 0.7655, 0.7655, 0.8388, 0.7655, 1.1612, 1.1612], q:[0.5806, 0.5806], qb:[0.6539, 0.5806], phi:[0.4011]] | 3*t^2.296 + t^2.406 + 3*t^3.484 + 6*t^4.593 + 6*t^4.687 + 3*t^4.703 + t^4.813 + 3*t^4.907 + t^5.127 + 6*t^5.78 + 3*t^5.89 - 10*t^6. - t^4.203/y - t^4.203*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
230 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.791 | 0.9858 | 0.8024 | [M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] | t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - t^4.147/y - t^4.147*y | detail |