Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
375 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.8092 1.0197 0.7935 [X:[], M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] [X:[], M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0], [-4, 0, 0, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_5$, $ M_6$, $ M_4$, $ M_2$, $ \phi_1^2$, $ M_1^2$, $ M_3^2$, $ M_5^2$, $ M_3M_5$, $ M_1M_5$, $ M_1M_3$, $ M_6^2$, $ M_4^2$, $ M_4M_6$, $ M_2^2$, $ M_2M_6$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_1M_4$, $ M_1M_6$, $ M_2M_3$, $ M_2M_5$, $ M_3M_6$, $ M_4M_5$, $ M_1M_2$, $ M_3M_4$, $ M_5M_6$, $ \phi_1^4$, $ M_5\phi_1^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$ . -16 7*t^2.26 + 28*t^4.51 + 10*t^4.87 - 16*t^6. + 84*t^6.77 + 55*t^7.13 - t^7.49 - 102*t^8.26 - 25*t^8.62 - t^4.13/y - (7*t^6.38)/y + (21*t^7.51)/y + (7*t^7.87)/y - (28*t^8.64)/y - t^4.13*y - 7*t^6.38*y + 21*t^7.51*y + 7*t^7.87*y - 28*t^8.64*y t^2.26/(g1^4*g2^4) + t^2.26/(g1^4*g3^4) + t^2.26/(g2^4*g3^4) + t^2.26/(g1^4*g4^4) + t^2.26/(g2^4*g4^4) + t^2.26/(g3^4*g4^4) + t^2.26/(g1^2*g2^2*g3^2*g4^2) + t^4.51/(g1^8*g2^8) + t^4.51/(g1^8*g3^8) + t^4.51/(g2^8*g3^8) + t^4.51/(g1^4*g2^4*g3^8) + t^4.51/(g1^4*g2^8*g3^4) + t^4.51/(g1^8*g2^4*g3^4) + t^4.51/(g1^8*g4^8) + t^4.51/(g2^8*g4^8) + t^4.51/(g1^4*g2^4*g4^8) + t^4.51/(g3^8*g4^8) + t^4.51/(g1^4*g3^4*g4^8) + t^4.51/(g2^4*g3^4*g4^8) + t^4.51/(g1^2*g2^2*g3^6*g4^6) + t^4.51/(g1^2*g2^6*g3^2*g4^6) + t^4.51/(g1^6*g2^2*g3^2*g4^6) + t^4.51/(g1^4*g2^8*g4^4) + t^4.51/(g1^8*g2^4*g4^4) + t^4.51/(g1^4*g3^8*g4^4) + t^4.51/(g2^4*g3^8*g4^4) + t^4.51/(g1^8*g3^4*g4^4) + t^4.51/(g2^8*g3^4*g4^4) + (4*t^4.51)/(g1^4*g2^4*g3^4*g4^4) + t^4.51/(g1^2*g2^6*g3^6*g4^2) + t^4.51/(g1^6*g2^2*g3^6*g4^2) + t^4.51/(g1^6*g2^6*g3^2*g4^2) + (g1^7*t^4.87)/(g2*g3*g4) + (g1^3*g2^3*t^4.87)/(g3*g4) + (g2^7*t^4.87)/(g1*g3*g4) + (g1^3*g3^3*t^4.87)/(g2*g4) + (g2^3*g3^3*t^4.87)/(g1*g4) + (g3^7*t^4.87)/(g1*g2*g4) + (g1^3*g4^3*t^4.87)/(g2*g3) + (g2^3*g4^3*t^4.87)/(g1*g3) + (g3^3*g4^3*t^4.87)/(g1*g2) + (g4^7*t^4.87)/(g1*g2*g3) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 + t^6.77/(g1^12*g2^12) + t^6.77/(g1^12*g3^12) + t^6.77/(g2^12*g3^12) + t^6.77/(g1^4*g2^8*g3^12) + t^6.77/(g1^8*g2^4*g3^12) + t^6.77/(g1^4*g2^12*g3^8) + t^6.77/(g1^8*g2^8*g3^8) + t^6.77/(g1^12*g2^4*g3^8) + t^6.77/(g1^8*g2^12*g3^4) + t^6.77/(g1^12*g2^8*g3^4) + t^6.77/(g1^12*g4^12) + t^6.77/(g2^12*g4^12) + t^6.77/(g1^4*g2^8*g4^12) + t^6.77/(g1^8*g2^4*g4^12) + t^6.77/(g3^12*g4^12) + t^6.77/(g1^4*g3^8*g4^12) + t^6.77/(g2^4*g3^8*g4^12) + t^6.77/(g1^8*g3^4*g4^12) + t^6.77/(g2^8*g3^4*g4^12) + t^6.77/(g1^4*g2^4*g3^4*g4^12) + t^6.77/(g1^2*g2^2*g3^10*g4^10) + t^6.77/(g1^2*g2^6*g3^6*g4^10) + t^6.77/(g1^6*g2^2*g3^6*g4^10) + t^6.77/(g1^2*g2^10*g3^2*g4^10) + t^6.77/(g1^6*g2^6*g3^2*g4^10) + t^6.77/(g1^10*g2^2*g3^2*g4^10) + t^6.77/(g1^4*g2^12*g4^8) + t^6.77/(g1^8*g2^8*g4^8) + t^6.77/(g1^12*g2^4*g4^8) + t^6.77/(g1^4*g3^12*g4^8) + t^6.77/(g2^4*g3^12*g4^8) + t^6.77/(g1^8*g3^8*g4^8) + t^6.77/(g2^8*g3^8*g4^8) + (4*t^6.77)/(g1^4*g2^4*g3^8*g4^8) + t^6.77/(g1^12*g3^4*g4^8) + t^6.77/(g2^12*g3^4*g4^8) + (4*t^6.77)/(g1^4*g2^8*g3^4*g4^8) + (4*t^6.77)/(g1^8*g2^4*g3^4*g4^8) + t^6.77/(g1^2*g2^6*g3^10*g4^6) + t^6.77/(g1^6*g2^2*g3^10*g4^6) + t^6.77/(g1^2*g2^10*g3^6*g4^6) + (4*t^6.77)/(g1^6*g2^6*g3^6*g4^6) + t^6.77/(g1^10*g2^2*g3^6*g4^6) + t^6.77/(g1^6*g2^10*g3^2*g4^6) + t^6.77/(g1^10*g2^6*g3^2*g4^6) + t^6.77/(g1^8*g2^12*g4^4) + t^6.77/(g1^12*g2^8*g4^4) + t^6.77/(g1^8*g3^12*g4^4) + t^6.77/(g2^8*g3^12*g4^4) + t^6.77/(g1^4*g2^4*g3^12*g4^4) + t^6.77/(g1^12*g3^8*g4^4) + t^6.77/(g2^12*g3^8*g4^4) + (4*t^6.77)/(g1^4*g2^8*g3^8*g4^4) + (4*t^6.77)/(g1^8*g2^4*g3^8*g4^4) + t^6.77/(g1^4*g2^12*g3^4*g4^4) + (4*t^6.77)/(g1^8*g2^8*g3^4*g4^4) + t^6.77/(g1^12*g2^4*g3^4*g4^4) + t^6.77/(g1^2*g2^10*g3^10*g4^2) + t^6.77/(g1^6*g2^6*g3^10*g4^2) + t^6.77/(g1^10*g2^2*g3^10*g4^2) + t^6.77/(g1^6*g2^10*g3^6*g4^2) + t^6.77/(g1^10*g2^6*g3^6*g4^2) + t^6.77/(g1^10*g2^10*g3^2*g4^2) + (g1^7*t^7.13)/(g2*g3^5*g4^5) + (g1^3*g2^3*t^7.13)/(g3^5*g4^5) + (g2^7*t^7.13)/(g1*g3^5*g4^5) + (g1^7*t^7.13)/(g2^5*g3*g4^5) + (2*g1^3*t^7.13)/(g2*g3*g4^5) + (2*g2^3*t^7.13)/(g1*g3*g4^5) + (g2^7*t^7.13)/(g1^5*g3*g4^5) + (g1^3*g3^3*t^7.13)/(g2^5*g4^5) + (2*g3^3*t^7.13)/(g1*g2*g4^5) + (g2^3*g3^3*t^7.13)/(g1^5*g4^5) + (g3^7*t^7.13)/(g1*g2^5*g4^5) + (g3^7*t^7.13)/(g1^5*g2*g4^5) + (g1^5*t^7.13)/(g2^3*g3^3*g4^3) + (g1*g2*t^7.13)/(g3^3*g4^3) + (g2^5*t^7.13)/(g1^3*g3^3*g4^3) + (g1*g3*t^7.13)/(g2^3*g4^3) + (g2*g3*t^7.13)/(g1^3*g4^3) + (g3^5*t^7.13)/(g1^3*g2^3*g4^3) + (g1^7*t^7.13)/(g2^5*g3^5*g4) + (2*g1^3*t^7.13)/(g2*g3^5*g4) + (2*g2^3*t^7.13)/(g1*g3^5*g4) + (g2^7*t^7.13)/(g1^5*g3^5*g4) + (2*g1^3*t^7.13)/(g2^5*g3*g4) + (3*t^7.13)/(g1*g2*g3*g4) + (2*g2^3*t^7.13)/(g1^5*g3*g4) + (2*g3^3*t^7.13)/(g1*g2^5*g4) + (2*g3^3*t^7.13)/(g1^5*g2*g4) + (g3^7*t^7.13)/(g1^5*g2^5*g4) + (g1*g4*t^7.13)/(g2^3*g3^3) + (g2*g4*t^7.13)/(g1^3*g3^3) + (g3*g4*t^7.13)/(g1^3*g2^3) + (g1^3*g4^3*t^7.13)/(g2^5*g3^5) + (2*g4^3*t^7.13)/(g1*g2*g3^5) + (g2^3*g4^3*t^7.13)/(g1^5*g3^5) + (2*g4^3*t^7.13)/(g1*g2^5*g3) + (2*g4^3*t^7.13)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.13)/(g1^5*g2^5) + (g4^5*t^7.13)/(g1^3*g2^3*g3^3) + (g4^7*t^7.13)/(g1*g2^5*g3^5) + (g4^7*t^7.13)/(g1^5*g2*g3^5) + (g4^7*t^7.13)/(g1^5*g2^5*g3) - g1^4*g2^4*g3^4*g4^4*t^7.49 - (2*t^8.26)/g1^8 - (2*t^8.26)/g2^8 - (7*t^8.26)/(g1^4*g2^4) - (2*t^8.26)/g3^8 - (g1^4*t^8.26)/(g2^4*g3^8) - (g2^4*t^8.26)/(g1^4*g3^8) - (7*t^8.26)/(g1^4*g3^4) - (g1^4*t^8.26)/(g2^8*g3^4) - (7*t^8.26)/(g2^4*g3^4) - (g2^4*t^8.26)/(g1^8*g3^4) - (g3^4*t^8.26)/(g1^4*g2^8) - (g3^4*t^8.26)/(g1^8*g2^4) - (2*t^8.26)/g4^8 - (g1^4*t^8.26)/(g2^4*g4^8) - (g2^4*t^8.26)/(g1^4*g4^8) - (g1^4*t^8.26)/(g3^4*g4^8) - (g2^4*t^8.26)/(g3^4*g4^8) - (g3^4*t^8.26)/(g1^4*g4^8) - (g3^4*t^8.26)/(g2^4*g4^8) - (g1^2*t^8.26)/(g2^2*g3^2*g4^6) - (g2^2*t^8.26)/(g1^2*g3^2*g4^6) - (g3^2*t^8.26)/(g1^2*g2^2*g4^6) - (7*t^8.26)/(g1^4*g4^4) - (g1^4*t^8.26)/(g2^8*g4^4) - (7*t^8.26)/(g2^4*g4^4) - (g2^4*t^8.26)/(g1^8*g4^4) - (g1^4*t^8.26)/(g3^8*g4^4) - (g2^4*t^8.26)/(g3^8*g4^4) - (7*t^8.26)/(g3^4*g4^4) - (3*g1^4*t^8.26)/(g2^4*g3^4*g4^4) - (3*g2^4*t^8.26)/(g1^4*g3^4*g4^4) - (g3^4*t^8.26)/(g1^8*g4^4) - (g3^4*t^8.26)/(g2^8*g4^4) - (3*g3^4*t^8.26)/(g1^4*g2^4*g4^4) - (g1^2*t^8.26)/(g2^2*g3^6*g4^2) - (g2^2*t^8.26)/(g1^2*g3^6*g4^2) - (g1^2*t^8.26)/(g2^6*g3^2*g4^2) - (4*t^8.26)/(g1^2*g2^2*g3^2*g4^2) - (g2^2*t^8.26)/(g1^6*g3^2*g4^2) - (g3^2*t^8.26)/(g1^2*g2^6*g4^2) - (g3^2*t^8.26)/(g1^6*g2^2*g4^2) - (g4^2*t^8.26)/(g1^2*g2^2*g3^6) - (g4^2*t^8.26)/(g1^2*g2^6*g3^2) - (g4^2*t^8.26)/(g1^6*g2^2*g3^2) - (g4^4*t^8.26)/(g1^4*g2^8) - (g4^4*t^8.26)/(g1^8*g2^4) - (g4^4*t^8.26)/(g1^4*g3^8) - (g4^4*t^8.26)/(g2^4*g3^8) - (g4^4*t^8.26)/(g1^8*g3^4) - (g4^4*t^8.26)/(g2^8*g3^4) - (3*g4^4*t^8.26)/(g1^4*g2^4*g3^4) - (g1^7*g2^3*g3^3*t^8.62)/g4 - (g1^3*g2^7*g3^3*t^8.62)/g4 - (g1^3*g2^3*g3^7*t^8.62)/g4 - g1^9*g2*g3*g4*t^8.62 - g1^5*g2^5*g3*g4*t^8.62 - g1*g2^9*g3*g4*t^8.62 - g1^5*g2*g3^5*g4*t^8.62 - g1*g2^5*g3^5*g4*t^8.62 - g1*g2*g3^9*g4*t^8.62 - (g1^7*g2^3*g4^3*t^8.62)/g3 - (g1^3*g2^7*g4^3*t^8.62)/g3 - (g1^7*g3^3*g4^3*t^8.62)/g2 - 3*g1^3*g2^3*g3^3*g4^3*t^8.62 - (g2^7*g3^3*g4^3*t^8.62)/g1 - (g1^3*g3^7*g4^3*t^8.62)/g2 - (g2^3*g3^7*g4^3*t^8.62)/g1 - g1^5*g2*g3*g4^5*t^8.62 - g1*g2^5*g3*g4^5*t^8.62 - g1*g2*g3^5*g4^5*t^8.62 - (g1^3*g2^3*g4^7*t^8.62)/g3 - (g1^3*g3^3*g4^7*t^8.62)/g2 - (g2^3*g3^3*g4^7*t^8.62)/g1 - g1*g2*g3*g4^9*t^8.62 - t^4.13/(g1*g2*g3*g4*y) - t^6.38/(g1*g2*g3^5*g4^5*y) - t^6.38/(g1*g2^5*g3*g4^5*y) - t^6.38/(g1^5*g2*g3*g4^5*y) - t^6.38/(g1^3*g2^3*g3^3*g4^3*y) - t^6.38/(g1*g2^5*g3^5*g4*y) - t^6.38/(g1^5*g2*g3^5*g4*y) - t^6.38/(g1^5*g2^5*g3*g4*y) + t^7.51/(g1^4*g2^4*g3^8*y) + t^7.51/(g1^4*g2^8*g3^4*y) + t^7.51/(g1^8*g2^4*g3^4*y) + t^7.51/(g1^4*g2^4*g4^8*y) + t^7.51/(g1^4*g3^4*g4^8*y) + t^7.51/(g2^4*g3^4*g4^8*y) + t^7.51/(g1^2*g2^2*g3^6*g4^6*y) + t^7.51/(g1^2*g2^6*g3^2*g4^6*y) + t^7.51/(g1^6*g2^2*g3^2*g4^6*y) + t^7.51/(g1^4*g2^8*g4^4*y) + t^7.51/(g1^8*g2^4*g4^4*y) + t^7.51/(g1^4*g3^8*g4^4*y) + t^7.51/(g2^4*g3^8*g4^4*y) + t^7.51/(g1^8*g3^4*g4^4*y) + t^7.51/(g2^8*g3^4*g4^4*y) + (3*t^7.51)/(g1^4*g2^4*g3^4*g4^4*y) + t^7.51/(g1^2*g2^6*g3^6*g4^2*y) + t^7.51/(g1^6*g2^2*g3^6*g4^2*y) + t^7.51/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.87)/(g3*g4*y) + (g1^3*g3^3*t^7.87)/(g2*g4*y) + (g2^3*g3^3*t^7.87)/(g1*g4*y) + (g1*g2*g3*g4*t^7.87)/y + (g1^3*g4^3*t^7.87)/(g2*g3*y) + (g2^3*g4^3*t^7.87)/(g1*g3*y) + (g3^3*g4^3*t^7.87)/(g1*g2*y) - t^8.64/(g1*g2*g3^9*g4^9*y) - t^8.64/(g1*g2^5*g3^5*g4^9*y) - t^8.64/(g1^5*g2*g3^5*g4^9*y) - t^8.64/(g1*g2^9*g3*g4^9*y) - t^8.64/(g1^5*g2^5*g3*g4^9*y) - t^8.64/(g1^9*g2*g3*g4^9*y) - t^8.64/(g1^3*g2^3*g3^7*g4^7*y) - t^8.64/(g1^3*g2^7*g3^3*g4^7*y) - t^8.64/(g1^7*g2^3*g3^3*g4^7*y) - t^8.64/(g1*g2^5*g3^9*g4^5*y) - t^8.64/(g1^5*g2*g3^9*g4^5*y) - t^8.64/(g1*g2^9*g3^5*g4^5*y) - (4*t^8.64)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.64/(g1^9*g2*g3^5*g4^5*y) - t^8.64/(g1^5*g2^9*g3*g4^5*y) - t^8.64/(g1^9*g2^5*g3*g4^5*y) - t^8.64/(g1^3*g2^7*g3^7*g4^3*y) - t^8.64/(g1^7*g2^3*g3^7*g4^3*y) - t^8.64/(g1^7*g2^7*g3^3*g4^3*y) - t^8.64/(g1*g2^9*g3^9*g4*y) - t^8.64/(g1^5*g2^5*g3^9*g4*y) - t^8.64/(g1^9*g2*g3^9*g4*y) - t^8.64/(g1^5*g2^9*g3^5*g4*y) - t^8.64/(g1^9*g2^5*g3^5*g4*y) - t^8.64/(g1^9*g2^9*g3*g4*y) - (t^4.13*y)/(g1*g2*g3*g4) - (t^6.38*y)/(g1*g2*g3^5*g4^5) - (t^6.38*y)/(g1*g2^5*g3*g4^5) - (t^6.38*y)/(g1^5*g2*g3*g4^5) - (t^6.38*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.38*y)/(g1*g2^5*g3^5*g4) - (t^6.38*y)/(g1^5*g2*g3^5*g4) - (t^6.38*y)/(g1^5*g2^5*g3*g4) + (t^7.51*y)/(g1^4*g2^4*g3^8) + (t^7.51*y)/(g1^4*g2^8*g3^4) + (t^7.51*y)/(g1^8*g2^4*g3^4) + (t^7.51*y)/(g1^4*g2^4*g4^8) + (t^7.51*y)/(g1^4*g3^4*g4^8) + (t^7.51*y)/(g2^4*g3^4*g4^8) + (t^7.51*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.51*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.51*y)/(g1^6*g2^2*g3^2*g4^6) + (t^7.51*y)/(g1^4*g2^8*g4^4) + (t^7.51*y)/(g1^8*g2^4*g4^4) + (t^7.51*y)/(g1^4*g3^8*g4^4) + (t^7.51*y)/(g2^4*g3^8*g4^4) + (t^7.51*y)/(g1^8*g3^4*g4^4) + (t^7.51*y)/(g2^8*g3^4*g4^4) + (3*t^7.51*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.51*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.51*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.51*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.87*y)/(g3*g4) + (g1^3*g3^3*t^7.87*y)/(g2*g4) + (g2^3*g3^3*t^7.87*y)/(g1*g4) + g1*g2*g3*g4*t^7.87*y + (g1^3*g4^3*t^7.87*y)/(g2*g3) + (g2^3*g4^3*t^7.87*y)/(g1*g3) + (g3^3*g4^3*t^7.87*y)/(g1*g2) - (t^8.64*y)/(g1*g2*g3^9*g4^9) - (t^8.64*y)/(g1*g2^5*g3^5*g4^9) - (t^8.64*y)/(g1^5*g2*g3^5*g4^9) - (t^8.64*y)/(g1*g2^9*g3*g4^9) - (t^8.64*y)/(g1^5*g2^5*g3*g4^9) - (t^8.64*y)/(g1^9*g2*g3*g4^9) - (t^8.64*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.64*y)/(g1^3*g2^7*g3^3*g4^7) - (t^8.64*y)/(g1^7*g2^3*g3^3*g4^7) - (t^8.64*y)/(g1*g2^5*g3^9*g4^5) - (t^8.64*y)/(g1^5*g2*g3^9*g4^5) - (t^8.64*y)/(g1*g2^9*g3^5*g4^5) - (4*t^8.64*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.64*y)/(g1^9*g2*g3^5*g4^5) - (t^8.64*y)/(g1^5*g2^9*g3*g4^5) - (t^8.64*y)/(g1^9*g2^5*g3*g4^5) - (t^8.64*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.64*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.64*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.64*y)/(g1*g2^9*g3^9*g4) - (t^8.64*y)/(g1^5*g2^5*g3^9*g4) - (t^8.64*y)/(g1^9*g2*g3^9*g4) - (t^8.64*y)/(g1^5*g2^9*g3^5*g4) - (t^8.64*y)/(g1^9*g2^5*g3^5*g4) - (t^8.64*y)/(g1^9*g2^9*g3*g4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
230 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ 0.791 0.9858 0.8024 [X:[], M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] t^2.21 + 5*t^2.29 + t^3.62 + t^4.42 + 5*t^4.51 + 15*t^4.59 + 3*t^4.77 + 4*t^4.85 + 3*t^4.94 + t^5.84 + t^5.92 - 8*t^6. - t^4.15/y - t^4.15*y detail