Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
375 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.8092 | 1.0197 | 0.7935 | [M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] | [M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0], [-4, 0, 0, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{3}$, ${ }M_{6}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ | ${}$ | -16 | 7*t^2.255 + 28*t^4.511 + 10*t^4.872 - 16*t^6. + 84*t^6.766 + 55*t^7.128 - t^7.489 - 102*t^8.255 - 25*t^8.617 - t^4.128/y - (7*t^6.383)/y + (21*t^7.511)/y + (7*t^7.872)/y - (28*t^8.638)/y - t^4.128*y - 7*t^6.383*y + 21*t^7.511*y + 7*t^7.872*y - 28*t^8.638*y | t^2.255/(g1^4*g2^4) + t^2.255/(g1^4*g3^4) + t^2.255/(g2^4*g3^4) + t^2.255/(g1^4*g4^4) + t^2.255/(g2^4*g4^4) + t^2.255/(g3^4*g4^4) + t^2.255/(g1^2*g2^2*g3^2*g4^2) + t^4.511/(g1^8*g2^8) + t^4.511/(g1^8*g3^8) + t^4.511/(g2^8*g3^8) + t^4.511/(g1^4*g2^4*g3^8) + t^4.511/(g1^4*g2^8*g3^4) + t^4.511/(g1^8*g2^4*g3^4) + t^4.511/(g1^8*g4^8) + t^4.511/(g2^8*g4^8) + t^4.511/(g1^4*g2^4*g4^8) + t^4.511/(g3^8*g4^8) + t^4.511/(g1^4*g3^4*g4^8) + t^4.511/(g2^4*g3^4*g4^8) + t^4.511/(g1^2*g2^2*g3^6*g4^6) + t^4.511/(g1^2*g2^6*g3^2*g4^6) + t^4.511/(g1^6*g2^2*g3^2*g4^6) + t^4.511/(g1^4*g2^8*g4^4) + t^4.511/(g1^8*g2^4*g4^4) + t^4.511/(g1^4*g3^8*g4^4) + t^4.511/(g2^4*g3^8*g4^4) + t^4.511/(g1^8*g3^4*g4^4) + t^4.511/(g2^8*g3^4*g4^4) + (4*t^4.511)/(g1^4*g2^4*g3^4*g4^4) + t^4.511/(g1^2*g2^6*g3^6*g4^2) + t^4.511/(g1^6*g2^2*g3^6*g4^2) + t^4.511/(g1^6*g2^6*g3^2*g4^2) + (g1^7*t^4.872)/(g2*g3*g4) + (g1^3*g2^3*t^4.872)/(g3*g4) + (g2^7*t^4.872)/(g1*g3*g4) + (g1^3*g3^3*t^4.872)/(g2*g4) + (g2^3*g3^3*t^4.872)/(g1*g4) + (g3^7*t^4.872)/(g1*g2*g4) + (g1^3*g4^3*t^4.872)/(g2*g3) + (g2^3*g4^3*t^4.872)/(g1*g3) + (g3^3*g4^3*t^4.872)/(g1*g2) + (g4^7*t^4.872)/(g1*g2*g3) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 + t^6.766/(g1^12*g2^12) + t^6.766/(g1^12*g3^12) + t^6.766/(g2^12*g3^12) + t^6.766/(g1^4*g2^8*g3^12) + t^6.766/(g1^8*g2^4*g3^12) + t^6.766/(g1^4*g2^12*g3^8) + t^6.766/(g1^8*g2^8*g3^8) + t^6.766/(g1^12*g2^4*g3^8) + t^6.766/(g1^8*g2^12*g3^4) + t^6.766/(g1^12*g2^8*g3^4) + t^6.766/(g1^12*g4^12) + t^6.766/(g2^12*g4^12) + t^6.766/(g1^4*g2^8*g4^12) + t^6.766/(g1^8*g2^4*g4^12) + t^6.766/(g3^12*g4^12) + t^6.766/(g1^4*g3^8*g4^12) + t^6.766/(g2^4*g3^8*g4^12) + t^6.766/(g1^8*g3^4*g4^12) + t^6.766/(g2^8*g3^4*g4^12) + t^6.766/(g1^4*g2^4*g3^4*g4^12) + t^6.766/(g1^2*g2^2*g3^10*g4^10) + t^6.766/(g1^2*g2^6*g3^6*g4^10) + t^6.766/(g1^6*g2^2*g3^6*g4^10) + t^6.766/(g1^2*g2^10*g3^2*g4^10) + t^6.766/(g1^6*g2^6*g3^2*g4^10) + t^6.766/(g1^10*g2^2*g3^2*g4^10) + t^6.766/(g1^4*g2^12*g4^8) + t^6.766/(g1^8*g2^8*g4^8) + t^6.766/(g1^12*g2^4*g4^8) + t^6.766/(g1^4*g3^12*g4^8) + t^6.766/(g2^4*g3^12*g4^8) + t^6.766/(g1^8*g3^8*g4^8) + t^6.766/(g2^8*g3^8*g4^8) + (4*t^6.766)/(g1^4*g2^4*g3^8*g4^8) + t^6.766/(g1^12*g3^4*g4^8) + t^6.766/(g2^12*g3^4*g4^8) + (4*t^6.766)/(g1^4*g2^8*g3^4*g4^8) + (4*t^6.766)/(g1^8*g2^4*g3^4*g4^8) + t^6.766/(g1^2*g2^6*g3^10*g4^6) + t^6.766/(g1^6*g2^2*g3^10*g4^6) + t^6.766/(g1^2*g2^10*g3^6*g4^6) + (4*t^6.766)/(g1^6*g2^6*g3^6*g4^6) + t^6.766/(g1^10*g2^2*g3^6*g4^6) + t^6.766/(g1^6*g2^10*g3^2*g4^6) + t^6.766/(g1^10*g2^6*g3^2*g4^6) + t^6.766/(g1^8*g2^12*g4^4) + t^6.766/(g1^12*g2^8*g4^4) + t^6.766/(g1^8*g3^12*g4^4) + t^6.766/(g2^8*g3^12*g4^4) + t^6.766/(g1^4*g2^4*g3^12*g4^4) + t^6.766/(g1^12*g3^8*g4^4) + t^6.766/(g2^12*g3^8*g4^4) + (4*t^6.766)/(g1^4*g2^8*g3^8*g4^4) + (4*t^6.766)/(g1^8*g2^4*g3^8*g4^4) + t^6.766/(g1^4*g2^12*g3^4*g4^4) + (4*t^6.766)/(g1^8*g2^8*g3^4*g4^4) + t^6.766/(g1^12*g2^4*g3^4*g4^4) + t^6.766/(g1^2*g2^10*g3^10*g4^2) + t^6.766/(g1^6*g2^6*g3^10*g4^2) + t^6.766/(g1^10*g2^2*g3^10*g4^2) + t^6.766/(g1^6*g2^10*g3^6*g4^2) + t^6.766/(g1^10*g2^6*g3^6*g4^2) + t^6.766/(g1^10*g2^10*g3^2*g4^2) + (g1^7*t^7.128)/(g2*g3^5*g4^5) + (g1^3*g2^3*t^7.128)/(g3^5*g4^5) + (g2^7*t^7.128)/(g1*g3^5*g4^5) + (g1^7*t^7.128)/(g2^5*g3*g4^5) + (2*g1^3*t^7.128)/(g2*g3*g4^5) + (2*g2^3*t^7.128)/(g1*g3*g4^5) + (g2^7*t^7.128)/(g1^5*g3*g4^5) + (g1^3*g3^3*t^7.128)/(g2^5*g4^5) + (2*g3^3*t^7.128)/(g1*g2*g4^5) + (g2^3*g3^3*t^7.128)/(g1^5*g4^5) + (g3^7*t^7.128)/(g1*g2^5*g4^5) + (g3^7*t^7.128)/(g1^5*g2*g4^5) + (g1^5*t^7.128)/(g2^3*g3^3*g4^3) + (g1*g2*t^7.128)/(g3^3*g4^3) + (g2^5*t^7.128)/(g1^3*g3^3*g4^3) + (g1*g3*t^7.128)/(g2^3*g4^3) + (g2*g3*t^7.128)/(g1^3*g4^3) + (g3^5*t^7.128)/(g1^3*g2^3*g4^3) + (g1^7*t^7.128)/(g2^5*g3^5*g4) + (2*g1^3*t^7.128)/(g2*g3^5*g4) + (2*g2^3*t^7.128)/(g1*g3^5*g4) + (g2^7*t^7.128)/(g1^5*g3^5*g4) + (2*g1^3*t^7.128)/(g2^5*g3*g4) + (3*t^7.128)/(g1*g2*g3*g4) + (2*g2^3*t^7.128)/(g1^5*g3*g4) + (2*g3^3*t^7.128)/(g1*g2^5*g4) + (2*g3^3*t^7.128)/(g1^5*g2*g4) + (g3^7*t^7.128)/(g1^5*g2^5*g4) + (g1*g4*t^7.128)/(g2^3*g3^3) + (g2*g4*t^7.128)/(g1^3*g3^3) + (g3*g4*t^7.128)/(g1^3*g2^3) + (g1^3*g4^3*t^7.128)/(g2^5*g3^5) + (2*g4^3*t^7.128)/(g1*g2*g3^5) + (g2^3*g4^3*t^7.128)/(g1^5*g3^5) + (2*g4^3*t^7.128)/(g1*g2^5*g3) + (2*g4^3*t^7.128)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.128)/(g1^5*g2^5) + (g4^5*t^7.128)/(g1^3*g2^3*g3^3) + (g4^7*t^7.128)/(g1*g2^5*g3^5) + (g4^7*t^7.128)/(g1^5*g2*g3^5) + (g4^7*t^7.128)/(g1^5*g2^5*g3) - g1^4*g2^4*g3^4*g4^4*t^7.489 - (2*t^8.255)/g1^8 - (2*t^8.255)/g2^8 - (7*t^8.255)/(g1^4*g2^4) - (2*t^8.255)/g3^8 - (g1^4*t^8.255)/(g2^4*g3^8) - (g2^4*t^8.255)/(g1^4*g3^8) - (7*t^8.255)/(g1^4*g3^4) - (g1^4*t^8.255)/(g2^8*g3^4) - (7*t^8.255)/(g2^4*g3^4) - (g2^4*t^8.255)/(g1^8*g3^4) - (g3^4*t^8.255)/(g1^4*g2^8) - (g3^4*t^8.255)/(g1^8*g2^4) - (2*t^8.255)/g4^8 - (g1^4*t^8.255)/(g2^4*g4^8) - (g2^4*t^8.255)/(g1^4*g4^8) - (g1^4*t^8.255)/(g3^4*g4^8) - (g2^4*t^8.255)/(g3^4*g4^8) - (g3^4*t^8.255)/(g1^4*g4^8) - (g3^4*t^8.255)/(g2^4*g4^8) - (g1^2*t^8.255)/(g2^2*g3^2*g4^6) - (g2^2*t^8.255)/(g1^2*g3^2*g4^6) - (g3^2*t^8.255)/(g1^2*g2^2*g4^6) - (7*t^8.255)/(g1^4*g4^4) - (g1^4*t^8.255)/(g2^8*g4^4) - (7*t^8.255)/(g2^4*g4^4) - (g2^4*t^8.255)/(g1^8*g4^4) - (g1^4*t^8.255)/(g3^8*g4^4) - (g2^4*t^8.255)/(g3^8*g4^4) - (7*t^8.255)/(g3^4*g4^4) - (3*g1^4*t^8.255)/(g2^4*g3^4*g4^4) - (3*g2^4*t^8.255)/(g1^4*g3^4*g4^4) - (g3^4*t^8.255)/(g1^8*g4^4) - (g3^4*t^8.255)/(g2^8*g4^4) - (3*g3^4*t^8.255)/(g1^4*g2^4*g4^4) - (g1^2*t^8.255)/(g2^2*g3^6*g4^2) - (g2^2*t^8.255)/(g1^2*g3^6*g4^2) - (g1^2*t^8.255)/(g2^6*g3^2*g4^2) - (4*t^8.255)/(g1^2*g2^2*g3^2*g4^2) - (g2^2*t^8.255)/(g1^6*g3^2*g4^2) - (g3^2*t^8.255)/(g1^2*g2^6*g4^2) - (g3^2*t^8.255)/(g1^6*g2^2*g4^2) - (g4^2*t^8.255)/(g1^2*g2^2*g3^6) - (g4^2*t^8.255)/(g1^2*g2^6*g3^2) - (g4^2*t^8.255)/(g1^6*g2^2*g3^2) - (g4^4*t^8.255)/(g1^4*g2^8) - (g4^4*t^8.255)/(g1^8*g2^4) - (g4^4*t^8.255)/(g1^4*g3^8) - (g4^4*t^8.255)/(g2^4*g3^8) - (g4^4*t^8.255)/(g1^8*g3^4) - (g4^4*t^8.255)/(g2^8*g3^4) - (3*g4^4*t^8.255)/(g1^4*g2^4*g3^4) - (g1^7*g2^3*g3^3*t^8.617)/g4 - (g1^3*g2^7*g3^3*t^8.617)/g4 - (g1^3*g2^3*g3^7*t^8.617)/g4 - g1^9*g2*g3*g4*t^8.617 - g1^5*g2^5*g3*g4*t^8.617 - g1*g2^9*g3*g4*t^8.617 - g1^5*g2*g3^5*g4*t^8.617 - g1*g2^5*g3^5*g4*t^8.617 - g1*g2*g3^9*g4*t^8.617 - (g1^7*g2^3*g4^3*t^8.617)/g3 - (g1^3*g2^7*g4^3*t^8.617)/g3 - (g1^7*g3^3*g4^3*t^8.617)/g2 - 3*g1^3*g2^3*g3^3*g4^3*t^8.617 - (g2^7*g3^3*g4^3*t^8.617)/g1 - (g1^3*g3^7*g4^3*t^8.617)/g2 - (g2^3*g3^7*g4^3*t^8.617)/g1 - g1^5*g2*g3*g4^5*t^8.617 - g1*g2^5*g3*g4^5*t^8.617 - g1*g2*g3^5*g4^5*t^8.617 - (g1^3*g2^3*g4^7*t^8.617)/g3 - (g1^3*g3^3*g4^7*t^8.617)/g2 - (g2^3*g3^3*g4^7*t^8.617)/g1 - g1*g2*g3*g4^9*t^8.617 - t^4.128/(g1*g2*g3*g4*y) - t^6.383/(g1*g2*g3^5*g4^5*y) - t^6.383/(g1*g2^5*g3*g4^5*y) - t^6.383/(g1^5*g2*g3*g4^5*y) - t^6.383/(g1^3*g2^3*g3^3*g4^3*y) - t^6.383/(g1*g2^5*g3^5*g4*y) - t^6.383/(g1^5*g2*g3^5*g4*y) - t^6.383/(g1^5*g2^5*g3*g4*y) + t^7.511/(g1^4*g2^4*g3^8*y) + t^7.511/(g1^4*g2^8*g3^4*y) + t^7.511/(g1^8*g2^4*g3^4*y) + t^7.511/(g1^4*g2^4*g4^8*y) + t^7.511/(g1^4*g3^4*g4^8*y) + t^7.511/(g2^4*g3^4*g4^8*y) + t^7.511/(g1^2*g2^2*g3^6*g4^6*y) + t^7.511/(g1^2*g2^6*g3^2*g4^6*y) + t^7.511/(g1^6*g2^2*g3^2*g4^6*y) + t^7.511/(g1^4*g2^8*g4^4*y) + t^7.511/(g1^8*g2^4*g4^4*y) + t^7.511/(g1^4*g3^8*g4^4*y) + t^7.511/(g2^4*g3^8*g4^4*y) + t^7.511/(g1^8*g3^4*g4^4*y) + t^7.511/(g2^8*g3^4*g4^4*y) + (3*t^7.511)/(g1^4*g2^4*g3^4*g4^4*y) + t^7.511/(g1^2*g2^6*g3^6*g4^2*y) + t^7.511/(g1^6*g2^2*g3^6*g4^2*y) + t^7.511/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.872)/(g3*g4*y) + (g1^3*g3^3*t^7.872)/(g2*g4*y) + (g2^3*g3^3*t^7.872)/(g1*g4*y) + (g1*g2*g3*g4*t^7.872)/y + (g1^3*g4^3*t^7.872)/(g2*g3*y) + (g2^3*g4^3*t^7.872)/(g1*g3*y) + (g3^3*g4^3*t^7.872)/(g1*g2*y) - t^8.638/(g1*g2*g3^9*g4^9*y) - t^8.638/(g1*g2^5*g3^5*g4^9*y) - t^8.638/(g1^5*g2*g3^5*g4^9*y) - t^8.638/(g1*g2^9*g3*g4^9*y) - t^8.638/(g1^5*g2^5*g3*g4^9*y) - t^8.638/(g1^9*g2*g3*g4^9*y) - t^8.638/(g1^3*g2^3*g3^7*g4^7*y) - t^8.638/(g1^3*g2^7*g3^3*g4^7*y) - t^8.638/(g1^7*g2^3*g3^3*g4^7*y) - t^8.638/(g1*g2^5*g3^9*g4^5*y) - t^8.638/(g1^5*g2*g3^9*g4^5*y) - t^8.638/(g1*g2^9*g3^5*g4^5*y) - (4*t^8.638)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.638/(g1^9*g2*g3^5*g4^5*y) - t^8.638/(g1^5*g2^9*g3*g4^5*y) - t^8.638/(g1^9*g2^5*g3*g4^5*y) - t^8.638/(g1^3*g2^7*g3^7*g4^3*y) - t^8.638/(g1^7*g2^3*g3^7*g4^3*y) - t^8.638/(g1^7*g2^7*g3^3*g4^3*y) - t^8.638/(g1*g2^9*g3^9*g4*y) - t^8.638/(g1^5*g2^5*g3^9*g4*y) - t^8.638/(g1^9*g2*g3^9*g4*y) - t^8.638/(g1^5*g2^9*g3^5*g4*y) - t^8.638/(g1^9*g2^5*g3^5*g4*y) - t^8.638/(g1^9*g2^9*g3*g4*y) - (t^4.128*y)/(g1*g2*g3*g4) - (t^6.383*y)/(g1*g2*g3^5*g4^5) - (t^6.383*y)/(g1*g2^5*g3*g4^5) - (t^6.383*y)/(g1^5*g2*g3*g4^5) - (t^6.383*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.383*y)/(g1*g2^5*g3^5*g4) - (t^6.383*y)/(g1^5*g2*g3^5*g4) - (t^6.383*y)/(g1^5*g2^5*g3*g4) + (t^7.511*y)/(g1^4*g2^4*g3^8) + (t^7.511*y)/(g1^4*g2^8*g3^4) + (t^7.511*y)/(g1^8*g2^4*g3^4) + (t^7.511*y)/(g1^4*g2^4*g4^8) + (t^7.511*y)/(g1^4*g3^4*g4^8) + (t^7.511*y)/(g2^4*g3^4*g4^8) + (t^7.511*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.511*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.511*y)/(g1^6*g2^2*g3^2*g4^6) + (t^7.511*y)/(g1^4*g2^8*g4^4) + (t^7.511*y)/(g1^8*g2^4*g4^4) + (t^7.511*y)/(g1^4*g3^8*g4^4) + (t^7.511*y)/(g2^4*g3^8*g4^4) + (t^7.511*y)/(g1^8*g3^4*g4^4) + (t^7.511*y)/(g2^8*g3^4*g4^4) + (3*t^7.511*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.511*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.511*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.511*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.872*y)/(g3*g4) + (g1^3*g3^3*t^7.872*y)/(g2*g4) + (g2^3*g3^3*t^7.872*y)/(g1*g4) + g1*g2*g3*g4*t^7.872*y + (g1^3*g4^3*t^7.872*y)/(g2*g3) + (g2^3*g4^3*t^7.872*y)/(g1*g3) + (g3^3*g4^3*t^7.872*y)/(g1*g2) - (t^8.638*y)/(g1*g2*g3^9*g4^9) - (t^8.638*y)/(g1*g2^5*g3^5*g4^9) - (t^8.638*y)/(g1^5*g2*g3^5*g4^9) - (t^8.638*y)/(g1*g2^9*g3*g4^9) - (t^8.638*y)/(g1^5*g2^5*g3*g4^9) - (t^8.638*y)/(g1^9*g2*g3*g4^9) - (t^8.638*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.638*y)/(g1^3*g2^7*g3^3*g4^7) - (t^8.638*y)/(g1^7*g2^3*g3^3*g4^7) - (t^8.638*y)/(g1*g2^5*g3^9*g4^5) - (t^8.638*y)/(g1^5*g2*g3^9*g4^5) - (t^8.638*y)/(g1*g2^9*g3^5*g4^5) - (4*t^8.638*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.638*y)/(g1^9*g2*g3^5*g4^5) - (t^8.638*y)/(g1^5*g2^9*g3*g4^5) - (t^8.638*y)/(g1^9*g2^5*g3*g4^5) - (t^8.638*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.638*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.638*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.638*y)/(g1*g2^9*g3^9*g4) - (t^8.638*y)/(g1^5*g2^5*g3^9*g4) - (t^8.638*y)/(g1^9*g2*g3^9*g4) - (t^8.638*y)/(g1^5*g2^9*g3^5*g4) - (t^8.638*y)/(g1^9*g2^5*g3^5*g4) - (t^8.638*y)/(g1^9*g2^9*g3*g4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
230 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.791 | 0.9858 | 0.8024 | [M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] | t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - t^4.147/y - t^4.147*y | detail |