Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
195 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ 0.6895 0.8748 0.7882 [M:[0.692, 0.7027, 0.692, 0.6884], q:[0.8261, 0.8261], qb:[0.4819, 0.4747], phi:[0.3478]] [M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -5, 1]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -2 t^2.065 + 2*t^2.076 + t^2.087 + t^2.108 + t^2.87 + 2*t^3.903 + t^3.913 + t^4.13 + 2*t^4.141 + 4*t^4.152 + 2*t^4.163 + 2*t^4.173 + 2*t^4.184 + t^4.195 + t^4.216 + t^4.935 + 2*t^4.946 + 2*t^4.957 + t^4.978 + t^5.74 + 2*t^5.968 + 4*t^5.978 + 2*t^5.989 - 2*t^6. + t^6.195 + 2*t^6.206 + 4*t^6.217 + 6*t^6.228 + 5*t^6.238 + 4*t^6.249 + 5*t^6.26 + 2*t^6.271 + 2*t^6.282 + 2*t^6.292 + t^6.303 + t^6.325 + 2*t^6.773 + t^6.783 + t^7. + 2*t^7.011 + 4*t^7.022 + 2*t^7.033 + t^7.043 + t^7.065 + t^7.086 + 3*t^7.805 + 2*t^7.816 - 2*t^7.837 + 2*t^8.033 + 4*t^8.044 + 6*t^8.054 - 4*t^8.076 - 2*t^8.087 - 2*t^8.097 - 3*t^8.108 + t^8.261 + 2*t^8.271 + 4*t^8.282 + 6*t^8.293 + 10*t^8.304 + 8*t^8.314 + 8*t^8.325 + 8*t^8.336 + 6*t^8.347 + 4*t^8.357 + 5*t^8.368 + 2*t^8.379 + 2*t^8.39 + 2*t^8.4 + t^8.411 + t^8.433 + t^8.61 + 2*t^8.838 + 3*t^8.848 + 2*t^8.859 - 3*t^8.87 - 2*t^8.881 - t^8.892 - t^4.043/y - t^6.108/y - (2*t^6.119)/y - t^6.13/y - t^6.152/y + (2*t^7.141)/y + (2*t^7.152)/y + (2*t^7.163)/y + t^7.173/y + (2*t^7.184)/y + t^7.195/y + (2*t^7.935)/y + (2*t^7.946)/y + (2*t^7.957)/y + (2*t^7.967)/y + (2*t^7.978)/y - t^8.174/y - (2*t^8.184)/y - (4*t^8.195)/y - (2*t^8.206)/y - (2*t^8.217)/y - (2*t^8.227)/y - t^8.238/y - t^8.26/y + (2*t^8.968)/y + (5*t^8.978)/y + (4*t^8.989)/y - t^4.043*y - t^6.108*y - 2*t^6.119*y - t^6.13*y - t^6.152*y + 2*t^7.141*y + 2*t^7.152*y + 2*t^7.163*y + t^7.173*y + 2*t^7.184*y + t^7.195*y + 2*t^7.935*y + 2*t^7.946*y + 2*t^7.957*y + 2*t^7.967*y + 2*t^7.978*y - t^8.174*y - 2*t^8.184*y - 4*t^8.195*y - 2*t^8.206*y - 2*t^8.217*y - 2*t^8.227*y - t^8.238*y - t^8.26*y + 2*t^8.968*y + 5*t^8.978*y + 4*t^8.989*y (g3*t^2.065)/g2^5 + t^2.076/(g1*g2^3) + (g1*t^2.076)/(g2^4*g3) + t^2.087/(g2^2*g3^2) + (g2*t^2.108)/g3^5 + g2^3*g3^3*t^2.87 + g1*g3^3*t^3.903 + (g2*g3^4*t^3.903)/g1 + g2^2*g3^2*t^3.913 + (g3^2*t^4.13)/g2^10 + (g1*t^4.141)/g2^9 + (g3*t^4.141)/(g1*g2^8) + t^4.152/(g1^2*g2^6) + (g1^2*t^4.152)/(g2^8*g3^2) + (2*t^4.152)/(g2^7*g3) + (g1*t^4.163)/(g2^6*g3^3) + t^4.163/(g1*g2^5*g3^2) + (2*t^4.173)/(g2^4*g3^4) + (g1*t^4.184)/(g2^3*g3^6) + t^4.184/(g1*g2^2*g3^5) + t^4.195/(g2*g3^7) + (g2^2*t^4.216)/g3^10 + (g3^4*t^4.935)/g2^2 + (g1*g3^2*t^4.946)/g2 + (g3^3*t^4.946)/g1 + 2*g2*g3*t^4.957 + (g2^4*t^4.978)/g3^2 + g2^6*g3^6*t^5.74 + (g1*g3^4*t^5.968)/g2^5 + (g3^5*t^5.968)/(g1*g2^4) + (g1^2*g3^2*t^5.978)/g2^4 + (2*g3^3*t^5.978)/g2^3 + (g3^4*t^5.978)/(g1^2*g2^2) + (g1*g3*t^5.989)/g2^2 + (g3^2*t^5.989)/(g1*g2) - 2*t^6. + (g3^3*t^6.195)/g2^15 + (g1*g3*t^6.206)/g2^14 + (g3^2*t^6.206)/(g1*g2^13) + (2*t^6.217)/g2^12 + (g1^2*t^6.217)/(g2^13*g3) + (g3*t^6.217)/(g1^2*g2^11) + t^6.228/(g1^3*g2^9) + (g1^3*t^6.228)/(g2^12*g3^3) + (2*g1*t^6.228)/(g2^11*g3^2) + (2*t^6.228)/(g1*g2^10*g3) + (g1^2*t^6.238)/(g2^10*g3^4) + (3*t^6.238)/(g2^9*g3^3) + t^6.238/(g1^2*g2^8*g3^2) + (2*g1*t^6.249)/(g2^8*g3^5) + (2*t^6.249)/(g1*g2^7*g3^4) + (g1^2*t^6.26)/(g2^7*g3^7) + (3*t^6.26)/(g2^6*g3^6) + t^6.26/(g1^2*g2^5*g3^5) + (g1*t^6.271)/(g2^5*g3^8) + t^6.271/(g1*g2^4*g3^7) + (2*t^6.282)/(g2^3*g3^9) + (g1*t^6.292)/(g2^2*g3^11) + t^6.292/(g1*g2*g3^10) + t^6.303/g3^12 + (g2^3*t^6.325)/g3^15 + g1*g2^3*g3^6*t^6.773 + (g2^4*g3^7*t^6.773)/g1 + g2^5*g3^5*t^6.783 + (g3^5*t^7.)/g2^7 + (g1*g3^3*t^7.011)/g2^6 + (g3^4*t^7.011)/(g1*g2^5) + (g1^2*g3*t^7.022)/g2^5 + (2*g3^2*t^7.022)/g2^4 + (g3^3*t^7.022)/(g1^2*g2^3) + (g1*t^7.033)/g2^3 + (g3*t^7.033)/(g1*g2^2) + t^7.043/(g2*g3) + (g2^2*t^7.065)/g3^4 + (g2^5*t^7.086)/g3^7 + g1^2*g3^6*t^7.805 + g2*g3^7*t^7.805 + (g2^2*g3^8*t^7.805)/g1^2 + g1*g2^2*g3^5*t^7.816 + (g2^3*g3^6*t^7.816)/g1 - g1*g2^5*g3^2*t^7.837 - (g2^6*g3^3*t^7.837)/g1 + (g1*g3^5*t^8.033)/g2^10 + (g3^6*t^8.033)/(g1*g2^9) + (g1^2*g3^3*t^8.044)/g2^9 + (2*g3^4*t^8.044)/g2^8 + (g3^5*t^8.044)/(g1^2*g2^7) + (g1^3*g3*t^8.054)/g2^8 + (2*g1*g3^2*t^8.054)/g2^7 + (2*g3^3*t^8.054)/(g1*g2^6) + (g3^4*t^8.054)/(g1^3*g2^5) + (g1^2*t^8.065)/g2^6 - (2*g3*t^8.065)/g2^5 + (g3^2*t^8.065)/(g1^2*g2^4) - (2*t^8.076)/(g1*g2^3) - (2*g1*t^8.076)/(g2^4*g3) - (2*t^8.087)/(g2^2*g3^2) - (g1*t^8.097)/(g2*g3^4) - t^8.097/(g1*g3^3) - (3*g2*t^8.108)/g3^5 + (g3^4*t^8.261)/g2^20 + (g1*g3^2*t^8.271)/g2^19 + (g3^3*t^8.271)/(g1*g2^18) + (g1^2*t^8.282)/g2^18 + (2*g3*t^8.282)/g2^17 + (g3^2*t^8.282)/(g1^2*g2^16) + (2*t^8.293)/(g1*g2^15) + (g1^3*t^8.293)/(g2^17*g3^2) + (2*g1*t^8.293)/(g2^16*g3) + (g3*t^8.293)/(g1^3*g2^14) + t^8.304/(g1^4*g2^12) + (g1^4*t^8.304)/(g2^16*g3^4) + (2*g1^2*t^8.304)/(g2^15*g3^3) + (4*t^8.304)/(g2^14*g3^2) + (2*t^8.304)/(g1^2*g2^13*g3) + (g1^3*t^8.314)/(g2^14*g3^5) + (3*g1*t^8.314)/(g2^13*g3^4) + (3*t^8.314)/(g1*g2^12*g3^3) + t^8.314/(g1^3*g2^11*g3^2) + (2*g1^2*t^8.325)/(g2^12*g3^6) + (4*t^8.325)/(g2^11*g3^5) + (2*t^8.325)/(g1^2*g2^10*g3^4) + (g1^3*t^8.336)/(g2^11*g3^8) + (3*g1*t^8.336)/(g2^10*g3^7) + (3*t^8.336)/(g1*g2^9*g3^6) + t^8.336/(g1^3*g2^8*g3^5) + (g1^2*t^8.347)/(g2^9*g3^9) + (4*t^8.347)/(g2^8*g3^8) + t^8.347/(g1^2*g2^7*g3^7) + (2*g1*t^8.357)/(g2^7*g3^10) + (2*t^8.357)/(g1*g2^6*g3^9) + (g1^2*t^8.368)/(g2^6*g3^12) + (3*t^8.368)/(g2^5*g3^11) + t^8.368/(g1^2*g2^4*g3^10) + (g1*t^8.379)/(g2^4*g3^13) + t^8.379/(g1*g2^3*g3^12) + (2*t^8.39)/(g2^2*g3^14) + (g1*t^8.4)/(g2*g3^16) + t^8.4/(g1*g3^15) + (g2*t^8.411)/g3^17 + (g2^4*t^8.433)/g3^20 + g2^9*g3^9*t^8.61 + (g1*g3^7*t^8.838)/g2^2 + (g3^8*t^8.838)/(g1*g2) + (g1^2*g3^5*t^8.848)/g2 + g3^6*t^8.848 + (g2*g3^7*t^8.848)/g1^2 + g1*g2*g3^4*t^8.859 + (g2^2*g3^5*t^8.859)/g1 - 3*g2^3*g3^3*t^8.87 - g1*g2^4*g3*t^8.881 - (g2^5*g3^2*t^8.881)/g1 - g2^6*t^8.892 - t^4.043/(g2*g3*y) - t^6.108/(g2^6*y) - (g1*t^6.119)/(g2^5*g3^2*y) - t^6.119/(g1*g2^4*g3*y) - t^6.13/(g2^3*g3^3*y) - t^6.152/(g3^6*y) + (g1*t^7.141)/(g2^9*y) + (g3*t^7.141)/(g1*g2^8*y) + (2*t^7.152)/(g2^7*g3*y) + (g1*t^7.163)/(g2^6*g3^3*y) + t^7.163/(g1*g2^5*g3^2*y) + t^7.173/(g2^4*g3^4*y) + (g1*t^7.184)/(g2^3*g3^6*y) + t^7.184/(g1*g2^2*g3^5*y) + t^7.195/(g2*g3^7*y) + (2*g3^4*t^7.935)/(g2^2*y) + (g1*g3^2*t^7.946)/(g2*y) + (g3^3*t^7.946)/(g1*y) + (2*g2*g3*t^7.957)/y + (g2^3*t^7.967)/(g1*y) + (g1*g2^2*t^7.967)/(g3*y) + (2*g2^4*t^7.978)/(g3^2*y) - (g3*t^8.174)/(g2^11*y) - t^8.184/(g1*g2^9*y) - (g1*t^8.184)/(g2^10*g3*y) - (g1^2*t^8.195)/(g2^9*g3^3*y) - (2*t^8.195)/(g2^8*g3^2*y) - t^8.195/(g1^2*g2^7*g3*y) - (g1*t^8.206)/(g2^7*g3^4*y) - t^8.206/(g1*g2^6*g3^3*y) - (2*t^8.217)/(g2^5*g3^5*y) - (g1*t^8.227)/(g2^4*g3^7*y) - t^8.227/(g1*g2^3*g3^6*y) - t^8.238/(g2^2*g3^8*y) - (g2*t^8.26)/(g3^11*y) + (g1*g3^4*t^8.968)/(g2^5*y) + (g3^5*t^8.968)/(g1*g2^4*y) + (g1^2*g3^2*t^8.978)/(g2^4*y) + (3*g3^3*t^8.978)/(g2^3*y) + (g3^4*t^8.978)/(g1^2*g2^2*y) + (2*g1*g3*t^8.989)/(g2^2*y) + (2*g3^2*t^8.989)/(g1*g2*y) - (t^4.043*y)/(g2*g3) - (t^6.108*y)/g2^6 - (g1*t^6.119*y)/(g2^5*g3^2) - (t^6.119*y)/(g1*g2^4*g3) - (t^6.13*y)/(g2^3*g3^3) - (t^6.152*y)/g3^6 + (g1*t^7.141*y)/g2^9 + (g3*t^7.141*y)/(g1*g2^8) + (2*t^7.152*y)/(g2^7*g3) + (g1*t^7.163*y)/(g2^6*g3^3) + (t^7.163*y)/(g1*g2^5*g3^2) + (t^7.173*y)/(g2^4*g3^4) + (g1*t^7.184*y)/(g2^3*g3^6) + (t^7.184*y)/(g1*g2^2*g3^5) + (t^7.195*y)/(g2*g3^7) + (2*g3^4*t^7.935*y)/g2^2 + (g1*g3^2*t^7.946*y)/g2 + (g3^3*t^7.946*y)/g1 + 2*g2*g3*t^7.957*y + (g2^3*t^7.967*y)/g1 + (g1*g2^2*t^7.967*y)/g3 + (2*g2^4*t^7.978*y)/g3^2 - (g3*t^8.174*y)/g2^11 - (t^8.184*y)/(g1*g2^9) - (g1*t^8.184*y)/(g2^10*g3) - (g1^2*t^8.195*y)/(g2^9*g3^3) - (2*t^8.195*y)/(g2^8*g3^2) - (t^8.195*y)/(g1^2*g2^7*g3) - (g1*t^8.206*y)/(g2^7*g3^4) - (t^8.206*y)/(g1*g2^6*g3^3) - (2*t^8.217*y)/(g2^5*g3^5) - (g1*t^8.227*y)/(g2^4*g3^7) - (t^8.227*y)/(g1*g2^3*g3^6) - (t^8.238*y)/(g2^2*g3^8) - (g2*t^8.26*y)/g3^11 + (g1*g3^4*t^8.968*y)/g2^5 + (g3^5*t^8.968*y)/(g1*g2^4) + (g1^2*g3^2*t^8.978*y)/g2^4 + (3*g3^3*t^8.978*y)/g2^3 + (g3^4*t^8.978*y)/(g1^2*g2^2) + (2*g1*g3*t^8.989*y)/g2^2 + (2*g3^2*t^8.989*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
311 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6895 0.8747 0.7883 [M:[0.6954, 0.7011, 0.6897, 0.6897], q:[0.8233, 0.829], qb:[0.4813, 0.4756], phi:[0.3477]] 2*t^2.069 + 2*t^2.086 + t^2.103 + t^2.871 + t^3.897 + 2*t^3.914 + 3*t^4.138 + 4*t^4.155 + 5*t^4.172 + 2*t^4.189 + t^4.206 + 2*t^4.94 + 3*t^4.957 + t^4.974 + t^5.741 + 2*t^5.966 + 4*t^5.983 - t^4.043/y - t^4.043*y detail
310 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{5}$ 0.6693 0.8377 0.7989 [M:[0.6919, 0.7273, 0.6919, 0.6801, 1.2727], q:[0.8241, 0.8241], qb:[0.4841, 0.4605], phi:[0.3518]] t^2.04 + 2*t^2.076 + t^2.111 + t^2.834 + t^3.818 + 2*t^3.854 + t^3.889 + t^4.08 + 2*t^4.116 + 4*t^4.151 + 2*t^4.187 + t^4.222 + t^4.874 + 2*t^4.909 + 2*t^4.945 + t^5.667 + t^5.858 + 4*t^5.894 + 5*t^5.929 + 2*t^5.965 - 2*t^6. - t^4.055/y - t^4.055*y detail
309 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}X_{1}$ + ${ }\phi_{1}^{2}X_{2}$ 0.5838 0.6909 0.845 [X:[1.7137, 1.4275], M:[0.7156, 0.2863, 0.7156, 0.8588], q:[0.8569, 0.8569], qb:[0.4275, 0.7137], phi:[0.2863]] 2*t^2.147 + t^2.576 + t^3.424 + 2*t^4.282 + 3*t^4.294 + 2*t^4.712 + 2*t^4.723 + t^5.141 + t^5.153 - 3*t^6. - t^3.859/y - t^3.859*y detail
308 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}^{2}$ + ${ }M_{2}X_{1}$ 0.5986 0.7318 0.8179 [X:[1.4911], M:[0.8772, 0.5089, 0.8772, 1.0], q:[0.8114, 0.8114], qb:[0.3114, 0.5569], phi:[0.3772]] t^2.263 + t^2.605 + 2*t^2.632 + t^3. + t^3.737 + 2*t^4.105 + t^4.473 + t^4.527 + 2*t^4.868 + 2*t^4.895 + t^5.21 + 2*t^5.237 + 3*t^5.263 + t^5.605 - t^6. - t^4.132/y - t^4.132*y detail
1726 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.7102 0.9149 0.7762 [M:[0.6854, 0.6964, 0.6964, 0.6891, 0.6891], q:[0.8323, 0.8213], qb:[0.4823, 0.4786], phi:[0.3464]] t^2.056 + 2*t^2.067 + t^2.078 + 2*t^2.089 + t^2.883 + t^3.9 + t^3.922 + t^4.112 + 2*t^4.123 + 4*t^4.134 + 4*t^4.145 + 5*t^4.156 + 2*t^4.167 + 3*t^4.178 + t^4.939 + 2*t^4.95 + 2*t^4.961 + 2*t^4.972 + t^5.766 + t^5.956 + 2*t^5.967 + t^5.978 + 2*t^5.989 - 2*t^6. - t^4.039/y - t^4.039*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
119 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.6689 0.8346 0.8015 [M:[0.6982, 0.6982, 0.6982], q:[0.8254, 0.8254], qb:[0.4763, 0.4763], phi:[0.3491]] 4*t^2.095 + t^2.858 + 4*t^3.905 + 10*t^4.189 + 5*t^4.953 + t^5.716 + 7*t^6. - t^4.047/y - t^4.047*y detail