Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
310 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ | 0.6693 | 0.8377 | 0.7989 | [X:[], M:[0.6919, 0.7273, 0.6919, 0.6801, 1.2727], q:[0.8241, 0.8241], qb:[0.4841, 0.4605], phi:[0.3518]] | [X:[], M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [0, -1, 5]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_1M_4$, $ M_3M_4$, $ M_3^2$, $ M_1^2$, $ M_1M_3$, $ M_4\phi_1^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_4M_5$, $ M_1M_5$, $ M_4q_2\tilde{q}_2$, $ M_3M_5$, $ M_4q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ | $\phi_1^3\tilde{q}_1\tilde{q}_2$ | -2 | t^2.04 + 2*t^2.08 + t^2.11 + t^2.83 + t^3.82 + 2*t^3.85 + t^3.89 + t^4.08 + 2*t^4.12 + 4*t^4.15 + 2*t^4.19 + t^4.22 + t^4.87 + 2*t^4.91 + 2*t^4.94 + t^5.67 + t^5.86 + 4*t^5.89 + 5*t^5.93 + 2*t^5.96 - 2*t^6. - 2*t^6.04 - t^6.07 + t^6.12 + 2*t^6.16 + 4*t^6.19 + 6*t^6.23 + 4*t^6.26 + 2*t^6.3 + t^6.33 + t^6.65 + 2*t^6.69 + t^6.72 + t^6.91 + 2*t^6.95 + 4*t^6.98 + 2*t^7.02 - 2*t^7.09 - t^7.13 + t^7.64 + 2*t^7.67 + 4*t^7.71 + 2*t^7.74 - 2*t^7.81 - t^7.85 + t^7.9 + 4*t^7.93 + 8*t^7.97 + 8*t^8. + t^8.04 - 6*t^8.08 - 6*t^8.11 - 4*t^8.15 + t^8.16 - t^8.18 + 2*t^8.2 + 4*t^8.23 + 6*t^8.27 + 9*t^8.3 + 6*t^8.34 + 4*t^8.37 + 2*t^8.41 + t^8.44 + t^8.5 + t^8.69 + 4*t^8.73 + 5*t^8.76 + 2*t^8.8 - 3*t^8.83 - 4*t^8.87 - 2*t^8.9 + t^8.95 + 2*t^8.99 - t^4.06/y - t^6.1/y - (2*t^6.13)/y - t^6.17/y + (2*t^7.12)/y + (2*t^7.15)/y + (2*t^7.19)/y + t^7.87/y + (2*t^7.91)/y + (2*t^7.94)/y + (2*t^7.98)/y + t^8.02/y - t^8.14/y - (2*t^8.17)/y - (4*t^8.21)/y - (2*t^8.24)/y - t^8.28/y + t^8.86/y + (4*t^8.89)/y + (6*t^8.93)/y + (4*t^8.96)/y - t^4.06*y - t^6.1*y - 2*t^6.13*y - t^6.17*y + 2*t^7.12*y + 2*t^7.15*y + 2*t^7.19*y + t^7.87*y + 2*t^7.91*y + 2*t^7.94*y + 2*t^7.98*y + t^8.02*y - t^8.14*y - 2*t^8.17*y - 4*t^8.21*y - 2*t^8.24*y - t^8.28*y + t^8.86*y + 4*t^8.89*y + 6*t^8.93*y + 4*t^8.96*y | (g3*t^2.04)/g2^5 + t^2.08/(g1*g2^3) + (g1*t^2.08)/(g2^4*g3) + t^2.11/(g2^2*g3^2) + g2^3*g3^3*t^2.83 + (g3^5*t^3.82)/g2 + g1*g3^3*t^3.85 + (g2*g3^4*t^3.85)/g1 + g2^2*g3^2*t^3.89 + (g3^2*t^4.08)/g2^10 + (g1*t^4.12)/g2^9 + (g3*t^4.12)/(g1*g2^8) + t^4.15/(g1^2*g2^6) + (g1^2*t^4.15)/(g2^8*g3^2) + (2*t^4.15)/(g2^7*g3) + (g1*t^4.19)/(g2^6*g3^3) + t^4.19/(g1*g2^5*g3^2) + t^4.22/(g2^4*g3^4) + (g3^4*t^4.87)/g2^2 + (g1*g3^2*t^4.91)/g2 + (g3^3*t^4.91)/g1 + 2*g2*g3*t^4.94 + g2^6*g3^6*t^5.67 + (g3^6*t^5.86)/g2^6 + (2*g1*g3^4*t^5.89)/g2^5 + (2*g3^5*t^5.89)/(g1*g2^4) + (g1^2*g3^2*t^5.93)/g2^4 + (3*g3^3*t^5.93)/g2^3 + (g3^4*t^5.93)/(g1^2*g2^2) + (g1*g3*t^5.96)/g2^2 + (g3^2*t^5.96)/(g1*g2) - 2*t^6. - (g1*g2*t^6.04)/g3^2 - (g2^2*t^6.04)/(g1*g3) - (g2^3*t^6.07)/g3^3 + (g3^3*t^6.12)/g2^15 + (g1*g3*t^6.16)/g2^14 + (g3^2*t^6.16)/(g1*g2^13) + (2*t^6.19)/g2^12 + (g1^2*t^6.19)/(g2^13*g3) + (g3*t^6.19)/(g1^2*g2^11) + t^6.23/(g1^3*g2^9) + (g1^3*t^6.23)/(g2^12*g3^3) + (2*g1*t^6.23)/(g2^11*g3^2) + (2*t^6.23)/(g1*g2^10*g3) + (g1^2*t^6.26)/(g2^10*g3^4) + (2*t^6.26)/(g2^9*g3^3) + t^6.26/(g1^2*g2^8*g3^2) + (g1*t^6.3)/(g2^8*g3^5) + t^6.3/(g1*g2^7*g3^4) + t^6.33/(g2^6*g3^6) + g2^2*g3^8*t^6.65 + g1*g2^3*g3^6*t^6.69 + (g2^4*g3^7*t^6.69)/g1 + g2^5*g3^5*t^6.72 + (g3^5*t^6.91)/g2^7 + (g1*g3^3*t^6.95)/g2^6 + (g3^4*t^6.95)/(g1*g2^5) + (g1^2*g3*t^6.98)/g2^5 + (2*g3^2*t^6.98)/g2^4 + (g3^3*t^6.98)/(g1^2*g2^3) + (g1*t^7.02)/g2^3 + (g3*t^7.02)/(g1*g2^2) - (g1*t^7.09)/g3^3 - (g2*t^7.09)/(g1*g3^2) - (g2^2*t^7.13)/g3^4 + (g3^10*t^7.64)/g2^2 + (g1*g3^8*t^7.67)/g2 + (g3^9*t^7.67)/g1 + g1^2*g3^6*t^7.71 + 2*g2*g3^7*t^7.71 + (g2^2*g3^8*t^7.71)/g1^2 + g1*g2^2*g3^5*t^7.74 + (g2^3*g3^6*t^7.74)/g1 - g1*g2^5*g3^2*t^7.81 - (g2^6*g3^3*t^7.81)/g1 - g2^7*g3*t^7.85 + (g3^7*t^7.9)/g2^11 + (2*g1*g3^5*t^7.93)/g2^10 + (2*g3^6*t^7.93)/(g1*g2^9) + (2*g1^2*g3^3*t^7.97)/g2^9 + (4*g3^4*t^7.97)/g2^8 + (2*g3^5*t^7.97)/(g1^2*g2^7) + (g1^3*g3*t^8.)/g2^8 + (3*g1*g3^2*t^8.)/g2^7 + (3*g3^3*t^8.)/(g1*g2^6) + (g3^4*t^8.)/(g1^3*g2^5) + (g1^2*t^8.04)/g2^6 - (g3*t^8.04)/g2^5 + (g3^2*t^8.04)/(g1^2*g2^4) - (3*t^8.08)/(g1*g2^3) - (3*g1*t^8.08)/(g2^4*g3) - (g1^2*t^8.11)/(g2^3*g3^3) - (4*t^8.11)/(g2^2*g3^2) - t^8.11/(g1^2*g2*g3) - (2*g1*t^8.15)/(g2*g3^4) - (2*t^8.15)/(g1*g3^3) + (g3^4*t^8.16)/g2^20 - (g2*t^8.18)/g3^5 + (g1*g3^2*t^8.2)/g2^19 + (g3^3*t^8.2)/(g1*g2^18) + (g1^2*t^8.23)/g2^18 + (2*g3*t^8.23)/g2^17 + (g3^2*t^8.23)/(g1^2*g2^16) + (2*t^8.27)/(g1*g2^15) + (g1^3*t^8.27)/(g2^17*g3^2) + (2*g1*t^8.27)/(g2^16*g3) + (g3*t^8.27)/(g1^3*g2^14) + t^8.3/(g1^4*g2^12) + (g1^4*t^8.3)/(g2^16*g3^4) + (2*g1^2*t^8.3)/(g2^15*g3^3) + (3*t^8.3)/(g2^14*g3^2) + (2*t^8.3)/(g1^2*g2^13*g3) + (g1^3*t^8.34)/(g2^14*g3^5) + (2*g1*t^8.34)/(g2^13*g3^4) + (2*t^8.34)/(g1*g2^12*g3^3) + t^8.34/(g1^3*g2^11*g3^2) + (g1^2*t^8.37)/(g2^12*g3^6) + (2*t^8.37)/(g2^11*g3^5) + t^8.37/(g1^2*g2^10*g3^4) + (g1*t^8.41)/(g2^10*g3^7) + t^8.41/(g1*g2^9*g3^6) + t^8.44/(g2^8*g3^8) + g2^9*g3^9*t^8.5 + (g3^9*t^8.69)/g2^3 + (2*g1*g3^7*t^8.73)/g2^2 + (2*g3^8*t^8.73)/(g1*g2) + (g1^2*g3^5*t^8.76)/g2 + 3*g3^6*t^8.76 + (g2*g3^7*t^8.76)/g1^2 + g1*g2*g3^4*t^8.8 + (g2^2*g3^5*t^8.8)/g1 - 3*g2^3*g3^3*t^8.83 - 2*g1*g2^4*g3*t^8.87 - (2*g2^5*g3^2*t^8.87)/g1 - 2*g2^6*t^8.9 + (g3^6*t^8.95)/g2^12 + (g1*g3^4*t^8.99)/g2^11 + (g3^5*t^8.99)/(g1*g2^10) - t^4.06/(g2*g3*y) - t^6.1/(g2^6*y) - (g1*t^6.13)/(g2^5*g3^2*y) - t^6.13/(g1*g2^4*g3*y) - t^6.17/(g2^3*g3^3*y) + (g1*t^7.12)/(g2^9*y) + (g3*t^7.12)/(g1*g2^8*y) + (2*t^7.15)/(g2^7*g3*y) + (g1*t^7.19)/(g2^6*g3^3*y) + t^7.19/(g1*g2^5*g3^2*y) + (g3^4*t^7.87)/(g2^2*y) + (g1*g3^2*t^7.91)/(g2*y) + (g3^3*t^7.91)/(g1*y) + (2*g2*g3*t^7.94)/y + (g2^3*t^7.98)/(g1*y) + (g1*g2^2*t^7.98)/(g3*y) + (g2^4*t^8.02)/(g3^2*y) - (g3*t^8.14)/(g2^11*y) - t^8.17/(g1*g2^9*y) - (g1*t^8.17)/(g2^10*g3*y) - (g1^2*t^8.21)/(g2^9*g3^3*y) - (2*t^8.21)/(g2^8*g3^2*y) - t^8.21/(g1^2*g2^7*g3*y) - (g1*t^8.24)/(g2^7*g3^4*y) - t^8.24/(g1*g2^6*g3^3*y) - t^8.28/(g2^5*g3^5*y) + (g3^6*t^8.86)/(g2^6*y) + (2*g1*g3^4*t^8.89)/(g2^5*y) + (2*g3^5*t^8.89)/(g1*g2^4*y) + (g1^2*g3^2*t^8.93)/(g2^4*y) + (4*g3^3*t^8.93)/(g2^3*y) + (g3^4*t^8.93)/(g1^2*g2^2*y) + (2*g1*g3*t^8.96)/(g2^2*y) + (2*g3^2*t^8.96)/(g1*g2*y) - (t^4.06*y)/(g2*g3) - (t^6.1*y)/g2^6 - (g1*t^6.13*y)/(g2^5*g3^2) - (t^6.13*y)/(g1*g2^4*g3) - (t^6.17*y)/(g2^3*g3^3) + (g1*t^7.12*y)/g2^9 + (g3*t^7.12*y)/(g1*g2^8) + (2*t^7.15*y)/(g2^7*g3) + (g1*t^7.19*y)/(g2^6*g3^3) + (t^7.19*y)/(g1*g2^5*g3^2) + (g3^4*t^7.87*y)/g2^2 + (g1*g3^2*t^7.91*y)/g2 + (g3^3*t^7.91*y)/g1 + 2*g2*g3*t^7.94*y + (g2^3*t^7.98*y)/g1 + (g1*g2^2*t^7.98*y)/g3 + (g2^4*t^8.02*y)/g3^2 - (g3*t^8.14*y)/g2^11 - (t^8.17*y)/(g1*g2^9) - (g1*t^8.17*y)/(g2^10*g3) - (g1^2*t^8.21*y)/(g2^9*g3^3) - (2*t^8.21*y)/(g2^8*g3^2) - (t^8.21*y)/(g1^2*g2^7*g3) - (g1*t^8.24*y)/(g2^7*g3^4) - (t^8.24*y)/(g1*g2^6*g3^3) - (t^8.28*y)/(g2^5*g3^5) + (g3^6*t^8.86*y)/g2^6 + (2*g1*g3^4*t^8.89*y)/g2^5 + (2*g3^5*t^8.89*y)/(g1*g2^4) + (g1^2*g3^2*t^8.93*y)/g2^4 + (4*g3^3*t^8.93*y)/g2^3 + (g3^4*t^8.93*y)/(g1^2*g2^2) + (2*g1*g3*t^8.96*y)/g2^2 + (2*g3^2*t^8.96*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
484 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1M_5$ | 0.669 | 0.8353 | 0.8009 | [X:[], M:[0.7048, 0.7048, 0.6889, 0.6942, 1.2952], q:[0.8172, 0.8331], qb:[0.4781, 0.4728], phi:[0.3497]] | t^2.07 + t^2.08 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.89 + t^3.9 + t^3.92 + t^4.13 + t^4.15 + 2*t^4.16 + 2*t^4.18 + 2*t^4.2 + t^4.21 + t^4.23 + t^4.92 + t^4.93 + 2*t^4.95 + t^4.97 + t^5.7 + t^5.94 + 2*t^5.95 + 2*t^5.97 + 2*t^5.98 - t^4.05/y - t^4.05*y | detail | |
486 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6692 | 0.8369 | 0.7996 | [X:[], M:[0.7022, 0.7192, 0.6851, 0.6851, 1.2808], q:[0.8159, 0.833], qb:[0.4819, 0.4649], phi:[0.3511]] | 2*t^2.06 + 2*t^2.11 + t^2.84 + 2*t^3.84 + 2*t^3.89 + 3*t^4.11 + 4*t^4.16 + 3*t^4.21 + 2*t^4.9 + 3*t^4.95 + t^5.68 + 4*t^5.9 + 6*t^5.95 - t^6. - t^4.05/y - t^4.05*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
195 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ | 0.6895 | 0.8748 | 0.7882 | [X:[], M:[0.692, 0.7027, 0.692, 0.6884], q:[0.8261, 0.8261], qb:[0.4819, 0.4747], phi:[0.3478]] | t^2.07 + 2*t^2.08 + t^2.09 + t^2.11 + t^2.87 + 2*t^3.9 + t^3.91 + t^4.13 + 2*t^4.14 + 4*t^4.15 + 2*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.22 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^4.98 + t^5.74 + 2*t^5.97 + 4*t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y | detail |