Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
311 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ 0.6895 0.8747 0.7883 [X:[], M:[0.6954, 0.7011, 0.6897, 0.6897], q:[0.8233, 0.829], qb:[0.4813, 0.4756], phi:[0.3477]] [X:[], M:[[-2, -2], [1, -5], [-5, 1], [-5, 1]], q:[[-1, 2], [2, -1]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_1$, $ \phi_1^2$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_1M_3$, $ M_1M_4$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_1^2$, $ M_2M_3$, $ M_2M_4$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1M_2$, $ M_2\phi_1^2$, $ M_2^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ $M_2q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ 0 2*t^2.07 + 2*t^2.09 + t^2.1 + t^2.87 + t^3.9 + 2*t^3.91 + 3*t^4.14 + 4*t^4.16 + 5*t^4.17 + 2*t^4.19 + t^4.21 + 2*t^4.94 + 3*t^4.96 + t^4.97 + t^5.74 + 2*t^5.97 + 4*t^5.98 + 4*t^6.21 + 6*t^6.22 + 9*t^6.24 + 8*t^6.26 + 5*t^6.28 + 2*t^6.29 + t^6.31 + t^6.77 + 2*t^6.78 + 3*t^7.01 + 4*t^7.03 + 3*t^7.04 + t^7.06 + t^7.08 + t^7.79 + 2*t^7.81 + t^7.83 - t^7.84 + 3*t^8.04 + 6*t^8.05 - t^8.07 - 3*t^8.09 - 4*t^8.1 + 5*t^8.28 + 8*t^8.29 + 13*t^8.31 + 14*t^8.33 + 14*t^8.34 + 8*t^8.36 + 5*t^8.38 + 2*t^8.4 + t^8.41 + t^8.61 + 2*t^8.84 + 3*t^8.85 - 2*t^8.87 - 2*t^8.89 - t^4.04/y - (2*t^6.11)/y - (2*t^6.13)/y - t^6.15/y + t^7.14/y + (4*t^7.16)/y + (3*t^7.17)/y + (2*t^7.19)/y + (3*t^7.94)/y + (4*t^7.96)/y + (3*t^7.97)/y - (3*t^8.18)/y - (4*t^8.2)/y - (5*t^8.22)/y - (2*t^8.23)/y - t^8.25/y + (2*t^8.97)/y + (6*t^8.98)/y - t^4.04*y - 2*t^6.11*y - 2*t^6.13*y - t^6.15*y + t^7.14*y + 4*t^7.16*y + 3*t^7.17*y + 2*t^7.19*y + 3*t^7.94*y + 4*t^7.96*y + 3*t^7.97*y - 3*t^8.18*y - 4*t^8.2*y - 5*t^8.22*y - 2*t^8.23*y - t^8.25*y + 2*t^8.97*y + 6*t^8.98*y (2*g2*t^2.07)/g1^5 + (2*t^2.09)/(g1^2*g2^2) + (g1*t^2.1)/g2^5 + g1^3*g2^3*t^2.87 + (g2^5*t^3.9)/g1 + 2*g1^2*g2^2*t^3.91 + (3*g2^2*t^4.14)/g1^10 + (4*t^4.16)/(g1^7*g2) + (5*t^4.17)/(g1^4*g2^4) + (2*t^4.19)/(g1*g2^7) + (g1^2*t^4.21)/g2^10 + (2*g2^4*t^4.94)/g1^2 + 3*g1*g2*t^4.96 + (g1^4*t^4.97)/g2^2 + g1^6*g2^6*t^5.74 + (2*g2^6*t^5.97)/g1^6 + (4*g2^3*t^5.98)/g1^3 + (4*g2^3*t^6.21)/g1^15 + (6*t^6.22)/g1^12 + (9*t^6.24)/(g1^9*g2^3) + (8*t^6.26)/(g1^6*g2^6) + (5*t^6.28)/(g1^3*g2^9) + (2*t^6.29)/g2^12 + (g1^3*t^6.31)/g2^15 + g1^2*g2^8*t^6.77 + 2*g1^5*g2^5*t^6.78 + (3*g2^5*t^7.01)/g1^7 + (4*g2^2*t^7.03)/g1^4 + (3*t^7.04)/(g1*g2) + (g1^2*t^7.06)/g2^4 + (g1^5*t^7.08)/g2^7 + (g2^10*t^7.79)/g1^2 + 2*g1*g2^7*t^7.81 + g1^4*g2^4*t^7.83 - g1^7*g2*t^7.84 + (3*g2^7*t^8.04)/g1^11 + (6*g2^4*t^8.05)/g1^8 - (g2*t^8.07)/g1^5 - (3*t^8.09)/(g1^2*g2^2) - (4*g1*t^8.1)/g2^5 + (5*g2^4*t^8.28)/g1^20 + (8*g2*t^8.29)/g1^17 + (13*t^8.31)/(g1^14*g2^2) + (14*t^8.33)/(g1^11*g2^5) + (14*t^8.34)/(g1^8*g2^8) + (8*t^8.36)/(g1^5*g2^11) + (5*t^8.38)/(g1^2*g2^14) + (2*g1*t^8.4)/g2^17 + (g1^4*t^8.41)/g2^20 + g1^9*g2^9*t^8.61 + (2*g2^9*t^8.84)/g1^3 + 3*g2^6*t^8.85 - 2*g1^3*g2^3*t^8.87 - 2*g1^6*t^8.89 - t^4.04/(g1*g2*y) - (2*t^6.11)/(g1^6*y) - (2*t^6.13)/(g1^3*g2^3*y) - t^6.15/(g2^6*y) + (g2^2*t^7.14)/(g1^10*y) + (4*t^7.16)/(g1^7*g2*y) + (3*t^7.17)/(g1^4*g2^4*y) + (2*t^7.19)/(g1*g2^7*y) + (3*g2^4*t^7.94)/(g1^2*y) + (4*g1*g2*t^7.96)/y + (3*g1^4*t^7.97)/(g2^2*y) - (3*g2*t^8.18)/(g1^11*y) - (4*t^8.2)/(g1^8*g2^2*y) - (5*t^8.22)/(g1^5*g2^5*y) - (2*t^8.23)/(g1^2*g2^8*y) - (g1*t^8.25)/(g2^11*y) + (2*g2^6*t^8.97)/(g1^6*y) + (6*g2^3*t^8.98)/(g1^3*y) - (t^4.04*y)/(g1*g2) - (2*t^6.11*y)/g1^6 - (2*t^6.13*y)/(g1^3*g2^3) - (t^6.15*y)/g2^6 + (g2^2*t^7.14*y)/g1^10 + (4*t^7.16*y)/(g1^7*g2) + (3*t^7.17*y)/(g1^4*g2^4) + (2*t^7.19*y)/(g1*g2^7) + (3*g2^4*t^7.94*y)/g1^2 + 4*g1*g2*t^7.96*y + (3*g1^4*t^7.97*y)/g2^2 - (3*g2*t^8.18*y)/g1^11 - (4*t^8.2*y)/(g1^8*g2^2) - (5*t^8.22*y)/(g1^5*g2^5) - (2*t^8.23*y)/(g1^2*g2^8) - (g1*t^8.25*y)/g2^11 + (2*g2^6*t^8.97*y)/g1^6 + (6*g2^3*t^8.98*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
488 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ 0.6895 0.8743 0.7886 [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.8263, 0.8263], qb:[0.4789, 0.4789], phi:[0.3474]] 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. - t^4.04/y - t^4.04*y detail
489 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.7101 0.9148 0.7763 [X:[], M:[0.6925, 0.6976, 0.6874, 0.6874, 0.6925], q:[0.8243, 0.8294], qb:[0.4832, 0.4781], phi:[0.3463]] 2*t^2.06 + 3*t^2.08 + t^2.09 + t^2.88 + t^3.91 + t^3.92 + 3*t^4.12 + 6*t^4.14 + 8*t^4.16 + 3*t^4.17 + t^4.19 + 2*t^4.95 + 4*t^4.96 + t^4.98 + t^5.77 + 2*t^5.97 + 3*t^5.98 - t^6. - t^4.04/y - t^4.04*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
195 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ 0.6895 0.8748 0.7882 [X:[], M:[0.692, 0.7027, 0.692, 0.6884], q:[0.8261, 0.8261], qb:[0.4819, 0.4747], phi:[0.3478]] t^2.07 + 2*t^2.08 + t^2.09 + t^2.11 + t^2.87 + 2*t^3.9 + t^3.91 + t^4.13 + 2*t^4.14 + 4*t^4.15 + 2*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.22 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^4.98 + t^5.74 + 2*t^5.97 + 4*t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y detail