Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1769 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7308 0.9552 0.7651 [M:[0.6836, 0.6937, 0.6937, 0.6903, 0.687, 0.687], q:[0.8324, 0.8224], qb:[0.4839, 0.4806], phi:[0.3452]] [M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -2, -2], [0, -5, 1], [1, -1, -4]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.051 + 2*t^2.061 + 2*t^2.071 + 2*t^2.081 + t^2.894 + t^3.909 + t^4.102 + 2*t^4.112 + 5*t^4.122 + 6*t^4.132 + 7*t^4.142 + 4*t^4.152 + 3*t^4.162 + t^4.945 + 2*t^4.955 + 3*t^4.965 + 2*t^4.975 + t^5.787 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - 2*t^6.01 - t^6.02 + t^6.153 + 2*t^6.163 + 5*t^6.173 + 10*t^6.183 + 13*t^6.193 + 16*t^6.203 + 15*t^6.213 + 12*t^6.223 + 6*t^6.233 + 4*t^6.243 + t^6.803 + t^6.995 + 2*t^7.005 + 5*t^7.015 + 6*t^7.025 + 7*t^7.035 + 4*t^7.045 + 2*t^7.055 + t^7.818 - t^7.878 + t^8.011 + 2*t^8.021 + 4*t^8.031 + 2*t^8.041 - 2*t^8.051 - 10*t^8.061 - 11*t^8.071 - 12*t^8.081 - 6*t^8.091 - 2*t^8.101 + t^8.204 + 2*t^8.214 + 5*t^8.224 + 10*t^8.234 + 18*t^8.244 + 24*t^8.254 + 32*t^8.264 + 32*t^8.274 + 32*t^8.284 + 24*t^8.294 + 17*t^8.304 + 8*t^8.314 + 5*t^8.324 + t^8.681 + t^8.854 + 2*t^8.864 + t^8.874 - 2*t^8.884 - 5*t^8.894 - 4*t^8.904 - 2*t^8.914 - t^4.035/y - t^6.086/y - (2*t^6.096)/y - (2*t^6.106)/y - (2*t^6.116)/y + (2*t^7.112)/y + (3*t^7.122)/y + (6*t^7.132)/y + (5*t^7.142)/y + (4*t^7.152)/y + t^7.162/y + t^7.945/y + (4*t^7.955)/y + (4*t^7.965)/y + (4*t^7.975)/y + t^7.985/y - t^8.137/y - (2*t^8.147)/y - (5*t^8.157)/y - (6*t^8.167)/y - (7*t^8.177)/y - (4*t^8.187)/y - (3*t^8.197)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (2*t^8.99)/y - t^4.035*y - t^6.086*y - 2*t^6.096*y - 2*t^6.106*y - 2*t^6.116*y + 2*t^7.112*y + 3*t^7.122*y + 6*t^7.132*y + 5*t^7.142*y + 4*t^7.152*y + t^7.162*y + t^7.945*y + 4*t^7.955*y + 4*t^7.965*y + 4*t^7.975*y + t^7.985*y - t^8.137*y - 2*t^8.147*y - 5*t^8.157*y - 6*t^8.167*y - 7*t^8.177*y - 4*t^8.187*y - 3*t^8.197*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 2*t^8.99*y (g1*t^2.051)/(g2^4*g3) + (g1*t^2.061)/(g2*g3^4) + (g3*t^2.061)/g2^5 + (2*t^2.071)/(g2^2*g3^2) + t^2.081/(g1*g2^3) + (g2*t^2.081)/g3^5 + g2^3*g3^3*t^2.894 + g1*g3^3*t^3.909 + (g1^2*t^4.102)/(g2^8*g3^2) + (g1*t^4.112)/g2^9 + (g1^2*t^4.112)/(g2^5*g3^5) + (g1^2*t^4.122)/(g2^2*g3^8) + (3*g1*t^4.122)/(g2^6*g3^3) + (g3^2*t^4.122)/g2^10 + (3*g1*t^4.132)/(g2^3*g3^6) + (3*t^4.132)/(g2^7*g3) + (g1*t^4.142)/g3^9 + (5*t^4.142)/(g2^4*g3^4) + (g3*t^4.142)/(g1*g2^8) + (2*t^4.152)/(g2*g3^7) + (2*t^4.152)/(g1*g2^5*g3^2) + t^4.162/(g1^2*g2^6) + (g2^2*t^4.162)/g3^10 + t^4.162/(g1*g2^2*g3^5) + (g1*g3^2*t^4.945)/g2 + (g1*g2^2*t^4.955)/g3 + (g3^4*t^4.955)/g2^2 + 3*g2*g3*t^4.965 + (g2^4*t^4.975)/g3^2 + (g3^3*t^4.975)/g1 + g2^6*g3^6*t^5.787 + (g1^2*g3^2*t^5.96)/g2^4 + (g1^2*t^5.97)/(g2*g3) + (g1*g3^4*t^5.97)/g2^5 + (g1*g3*t^5.98)/g2^2 - 3*t^6. - (g2^3*t^6.01)/g3^3 - (g3^2*t^6.01)/(g1*g2) - (g2^2*t^6.02)/(g1*g3) + (g1^3*t^6.153)/(g2^12*g3^3) + (g1^3*t^6.163)/(g2^9*g3^6) + (g1^2*t^6.163)/(g2^13*g3) + (g1^3*t^6.173)/(g2^6*g3^9) + (3*g1^2*t^6.173)/(g2^10*g3^4) + (g1*g3*t^6.173)/g2^14 + (g1^3*t^6.183)/(g2^3*g3^12) + (4*g1^2*t^6.183)/(g2^7*g3^7) + (4*g1*t^6.183)/(g2^11*g3^2) + (g3^3*t^6.183)/g2^15 + (3*t^6.193)/g2^12 + (3*g1^2*t^6.193)/(g2^4*g3^10) + (7*g1*t^6.193)/(g2^8*g3^5) + (g1^2*t^6.203)/(g2*g3^13) + (7*g1*t^6.203)/(g2^5*g3^8) + (7*t^6.203)/(g2^9*g3^3) + (g3^2*t^6.203)/(g1*g2^13) + (3*g1*t^6.213)/(g2^2*g3^11) + (9*t^6.213)/(g2^6*g3^6) + (3*t^6.213)/(g1*g2^10*g3) + (g1*g2*t^6.223)/g3^14 + (5*t^6.223)/(g2^3*g3^9) + (5*t^6.223)/(g1*g2^7*g3^4) + (g3*t^6.223)/(g1^2*g2^11) + (2*t^6.233)/g3^12 + (2*t^6.233)/(g1*g2^4*g3^7) + (2*t^6.233)/(g1^2*g2^8*g3^2) + t^6.243/(g1^3*g2^9) + (g2^3*t^6.243)/g3^15 + t^6.243/(g1*g2*g3^10) + t^6.243/(g1^2*g2^5*g3^5) + g1*g2^3*g3^6*t^6.803 + (g1^2*g3*t^6.995)/g2^5 + (g1^2*t^7.005)/(g2^2*g3^2) + (g1*g3^3*t^7.005)/g2^6 + (3*g1*t^7.015)/g2^3 + (g1^2*g2*t^7.015)/g3^5 + (g3^5*t^7.015)/g2^7 + (3*g1*t^7.025)/g3^3 + (3*g3^2*t^7.025)/g2^4 + (g1*g2^3*t^7.035)/g3^6 + (5*t^7.035)/(g2*g3) + (g3^4*t^7.035)/(g1*g2^5) + (2*g2^2*t^7.045)/g3^4 + (2*g3*t^7.045)/(g1*g2^2) + (g2^5*t^7.055)/g3^7 + (g3^3*t^7.055)/(g1^2*g2^3) + g1^2*g3^6*t^7.818 - (g2^6*g3^3*t^7.878)/g1 + (g1^3*g3*t^8.011)/g2^8 + (g1^3*t^8.021)/(g2^5*g3^2) + (g1^2*g3^3*t^8.021)/g2^9 + (2*g1^2*t^8.031)/g2^6 + (g1^3*t^8.031)/(g2^2*g3^5) + (g1*g3^5*t^8.031)/g2^10 + (g1^2*t^8.041)/(g2^3*g3^3) + (g1*g3^2*t^8.041)/g2^7 - (2*g1*t^8.051)/(g2^4*g3) - (5*g1*t^8.061)/(g2*g3^4) - (5*g3*t^8.061)/g2^5 - (g1*g2^2*t^8.071)/g3^7 - (9*t^8.071)/(g2^2*g3^2) - (g3^3*t^8.071)/(g1*g2^6) - (6*t^8.081)/(g1*g2^3) - (6*g2*t^8.081)/g3^5 - (g2^4*t^8.091)/g3^8 - (4*t^8.091)/(g1*g3^3) - (g3^2*t^8.091)/(g1^2*g2^4) - (g2^3*t^8.101)/(g1*g3^6) - t^8.101/(g1^2*g2*g3) + (g1^4*t^8.204)/(g2^16*g3^4) + (g1^4*t^8.214)/(g2^13*g3^7) + (g1^3*t^8.214)/(g2^17*g3^2) + (g1^2*t^8.224)/g2^18 + (g1^4*t^8.224)/(g2^10*g3^10) + (3*g1^3*t^8.224)/(g2^14*g3^5) + (g1^4*t^8.234)/(g2^7*g3^13) + (4*g1^3*t^8.234)/(g2^11*g3^8) + (4*g1^2*t^8.234)/(g2^15*g3^3) + (g1*g3^2*t^8.234)/g2^19 + (g1^4*t^8.244)/(g2^4*g3^16) + (4*g1^3*t^8.244)/(g2^8*g3^11) + (8*g1^2*t^8.244)/(g2^12*g3^6) + (4*g1*t^8.244)/(g2^16*g3) + (g3^4*t^8.244)/g2^20 + (3*g1^3*t^8.254)/(g2^5*g3^14) + (9*g1^2*t^8.254)/(g2^9*g3^9) + (9*g1*t^8.254)/(g2^13*g3^4) + (3*g3*t^8.254)/g2^17 + (g1^3*t^8.264)/(g2^2*g3^17) + (8*g1^2*t^8.264)/(g2^6*g3^12) + (14*g1*t^8.264)/(g2^10*g3^7) + (8*t^8.264)/(g2^14*g3^2) + (g3^3*t^8.264)/(g1*g2^18) + (3*t^8.274)/(g1*g2^15) + (3*g1^2*t^8.274)/(g2^3*g3^15) + (13*g1*t^8.274)/(g2^7*g3^10) + (13*t^8.274)/(g2^11*g3^5) + (g1^2*t^8.284)/g3^18 + (7*g1*t^8.284)/(g2^4*g3^13) + (16*t^8.284)/(g2^8*g3^8) + (7*t^8.284)/(g1*g2^12*g3^3) + (g3^2*t^8.284)/(g1^2*g2^16) + (3*g1*t^8.294)/(g2*g3^16) + (9*t^8.294)/(g2^5*g3^11) + (9*t^8.294)/(g1*g2^9*g3^6) + (3*t^8.294)/(g1^2*g2^13*g3) + (g1*g2^2*t^8.304)/g3^19 + (5*t^8.304)/(g2^2*g3^14) + (5*t^8.304)/(g1*g2^6*g3^9) + (5*t^8.304)/(g1^2*g2^10*g3^4) + (g3*t^8.304)/(g1^3*g2^14) + (2*g2*t^8.314)/g3^17 + (2*t^8.314)/(g1*g2^3*g3^12) + (2*t^8.314)/(g1^2*g2^7*g3^7) + (2*t^8.314)/(g1^3*g2^11*g3^2) + t^8.324/(g1^4*g2^12) + (g2^4*t^8.324)/g3^20 + t^8.324/(g1*g3^15) + t^8.324/(g1^2*g2^4*g3^10) + t^8.324/(g1^3*g2^8*g3^5) + g2^9*g3^9*t^8.681 + (g1^2*g3^5*t^8.854)/g2 + g1^2*g2^2*g3^2*t^8.864 + (g1*g3^7*t^8.864)/g2^2 + g1*g2*g3^4*t^8.874 - g1*g2^4*g3*t^8.884 - g3^6*t^8.884 - 5*g2^3*g3^3*t^8.894 - 2*g2^6*t^8.904 - (2*g2^2*g3^5*t^8.904)/g1 - (2*g2^5*g3^2*t^8.914)/g1 - t^4.035/(g2*g3*y) - (g1*t^6.086)/(g2^5*g3^2*y) - t^6.096/(g2^6*y) - (g1*t^6.096)/(g2^2*g3^5*y) - (2*t^6.106)/(g2^3*g3^3*y) - t^6.116/(g3^6*y) - t^6.116/(g1*g2^4*g3*y) + (g1*t^7.112)/(g2^9*y) + (g1^2*t^7.112)/(g2^5*g3^5*y) + (3*g1*t^7.122)/(g2^6*g3^3*y) + (3*g1*t^7.132)/(g2^3*g3^6*y) + (3*t^7.132)/(g2^7*g3*y) + (g1*t^7.142)/(g3^9*y) + (3*t^7.142)/(g2^4*g3^4*y) + (g3*t^7.142)/(g1*g2^8*y) + (2*t^7.152)/(g2*g3^7*y) + (2*t^7.152)/(g1*g2^5*g3^2*y) + t^7.162/(g1*g2^2*g3^5*y) + (g1*g3^2*t^7.945)/(g2*y) + (2*g1*g2^2*t^7.955)/(g3*y) + (2*g3^4*t^7.955)/(g2^2*y) + (4*g2*g3*t^7.965)/y + (2*g2^4*t^7.975)/(g3^2*y) + (2*g3^3*t^7.975)/(g1*y) + (g2^3*t^7.985)/(g1*y) - (g1^2*t^8.137)/(g2^9*g3^3*y) - (g1^2*t^8.147)/(g2^6*g3^6*y) - (g1*t^8.147)/(g2^10*g3*y) - (g1^2*t^8.157)/(g2^3*g3^9*y) - (3*g1*t^8.157)/(g2^7*g3^4*y) - (g3*t^8.157)/(g2^11*y) - (3*g1*t^8.167)/(g2^4*g3^7*y) - (3*t^8.167)/(g2^8*g3^2*y) - t^8.177/(g1*g2^9*y) - (g1*t^8.177)/(g2*g3^10*y) - (5*t^8.177)/(g2^5*g3^5*y) - (2*t^8.187)/(g2^2*g3^8*y) - (2*t^8.187)/(g1*g2^6*g3^3*y) - (g2*t^8.197)/(g3^11*y) - t^8.197/(g1*g2^3*g3^6*y) - t^8.197/(g1^2*g2^7*g3*y) + (g1^2*g3^2*t^8.96)/(g2^4*y) + (g1^2*t^8.97)/(g2*g3*y) + (g1*g3^4*t^8.97)/(g2^5*y) + (2*g1*g3*t^8.98)/(g2^2*y) + (g1*g2*t^8.99)/(g3^2*y) + (g3^3*t^8.99)/(g2^3*y) - (t^4.035*y)/(g2*g3) - (g1*t^6.086*y)/(g2^5*g3^2) - (t^6.096*y)/g2^6 - (g1*t^6.096*y)/(g2^2*g3^5) - (2*t^6.106*y)/(g2^3*g3^3) - (t^6.116*y)/g3^6 - (t^6.116*y)/(g1*g2^4*g3) + (g1*t^7.112*y)/g2^9 + (g1^2*t^7.112*y)/(g2^5*g3^5) + (3*g1*t^7.122*y)/(g2^6*g3^3) + (3*g1*t^7.132*y)/(g2^3*g3^6) + (3*t^7.132*y)/(g2^7*g3) + (g1*t^7.142*y)/g3^9 + (3*t^7.142*y)/(g2^4*g3^4) + (g3*t^7.142*y)/(g1*g2^8) + (2*t^7.152*y)/(g2*g3^7) + (2*t^7.152*y)/(g1*g2^5*g3^2) + (t^7.162*y)/(g1*g2^2*g3^5) + (g1*g3^2*t^7.945*y)/g2 + (2*g1*g2^2*t^7.955*y)/g3 + (2*g3^4*t^7.955*y)/g2^2 + 4*g2*g3*t^7.965*y + (2*g2^4*t^7.975*y)/g3^2 + (2*g3^3*t^7.975*y)/g1 + (g2^3*t^7.985*y)/g1 - (g1^2*t^8.137*y)/(g2^9*g3^3) - (g1^2*t^8.147*y)/(g2^6*g3^6) - (g1*t^8.147*y)/(g2^10*g3) - (g1^2*t^8.157*y)/(g2^3*g3^9) - (3*g1*t^8.157*y)/(g2^7*g3^4) - (g3*t^8.157*y)/g2^11 - (3*g1*t^8.167*y)/(g2^4*g3^7) - (3*t^8.167*y)/(g2^8*g3^2) - (t^8.177*y)/(g1*g2^9) - (g1*t^8.177*y)/(g2*g3^10) - (5*t^8.177*y)/(g2^5*g3^5) - (2*t^8.187*y)/(g2^2*g3^8) - (2*t^8.187*y)/(g1*g2^6*g3^3) - (g2*t^8.197*y)/g3^11 - (t^8.197*y)/(g1*g2^3*g3^6) - (t^8.197*y)/(g1^2*g2^7*g3) + (g1^2*g3^2*t^8.96*y)/g2^4 + (g1^2*t^8.97*y)/(g2*g3) + (g1*g3^4*t^8.97*y)/g2^5 + (2*g1*g3*t^8.98*y)/g2^2 + (g1*g2*t^8.99*y)/g3^2 + (g3^3*t^8.99*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2770 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ 0.7515 0.9955 0.7549 [M:[0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878], q:[0.828, 0.828], qb:[0.4841, 0.4841], phi:[0.3439]] 8*t^2.063 + t^2.905 + 36*t^4.127 + 9*t^4.968 + t^5.81 - 9*t^6. - t^4.032/y - t^4.032*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
302 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ 0.7102 0.9148 0.7763 [M:[0.6894, 0.6991, 0.6894, 0.6926, 0.6862], q:[0.8268, 0.8268], qb:[0.4837, 0.4773], phi:[0.3463]] t^2.059 + 2*t^2.068 + 2*t^2.078 + t^2.097 + t^2.883 + 2*t^3.912 + t^4.117 + 2*t^4.127 + 5*t^4.136 + 4*t^4.146 + 4*t^4.156 + 2*t^4.166 + 2*t^4.175 + t^4.195 + t^4.942 + 2*t^4.951 + 3*t^4.961 + t^4.98 + t^5.766 + 2*t^5.971 + 3*t^5.981 + 2*t^5.99 - 3*t^6. - t^4.039/y - t^4.039*y detail