Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
302 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ | 0.7102 | 0.9148 | 0.7763 | [M:[0.6894, 0.6991, 0.6894, 0.6926, 0.6862], q:[0.8268, 0.8268], qb:[0.4837, 0.4773], phi:[0.3463]] | [M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -2, -2], [0, -5, 1]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.059 + 2*t^2.068 + 2*t^2.078 + t^2.097 + t^2.883 + 2*t^3.912 + t^4.117 + 2*t^4.127 + 5*t^4.136 + 4*t^4.146 + 4*t^4.156 + 2*t^4.166 + 2*t^4.175 + t^4.195 + t^4.942 + 2*t^4.951 + 3*t^4.961 + t^4.98 + t^5.766 + 2*t^5.971 + 3*t^5.981 + 2*t^5.99 - 3*t^6. - t^6.019 + t^6.176 + 2*t^6.185 + 5*t^6.195 + 8*t^6.205 + 10*t^6.214 + 8*t^6.224 + 9*t^6.234 + 4*t^6.243 + 4*t^6.253 + 2*t^6.263 + 2*t^6.272 + t^6.292 + 2*t^6.796 + t^7. + 2*t^7.01 + 5*t^7.02 + 4*t^7.029 + 4*t^7.039 + 2*t^7.058 + t^7.078 + 3*t^7.825 - 2*t^7.854 + 2*t^8.029 + 3*t^8.039 + 6*t^8.049 - t^8.059 - 4*t^8.068 - 7*t^8.078 - 4*t^8.088 - 5*t^8.097 - t^8.117 + t^8.234 + 2*t^8.244 + 5*t^8.254 + 8*t^8.263 + 15*t^8.273 + 16*t^8.283 + 18*t^8.292 + 16*t^8.302 + 15*t^8.312 + 8*t^8.321 + 9*t^8.331 + 4*t^8.341 + 4*t^8.35 + 2*t^8.36 + 2*t^8.37 + t^8.389 + t^8.649 + 2*t^8.854 + 2*t^8.864 + 2*t^8.873 - 5*t^8.883 - 2*t^8.893 - 2*t^8.902 - t^4.039/y - t^6.098/y - (2*t^6.107)/y - (2*t^6.117)/y - t^6.136/y + (2*t^7.127)/y + (3*t^7.136)/y + (4*t^7.146)/y + (2*t^7.156)/y + (2*t^7.166)/y + (2*t^7.175)/y + (2*t^7.942)/y + (2*t^7.951)/y + (4*t^7.961)/y + (2*t^7.971)/y + (2*t^7.98)/y - t^8.156/y - (2*t^8.166)/y - (5*t^8.175)/y - (4*t^8.185)/y - (4*t^8.195)/y - (2*t^8.204)/y - (2*t^8.214)/y - t^8.234/y + (2*t^8.971)/y + (4*t^8.981)/y + (4*t^8.99)/y - t^4.039*y - t^6.098*y - 2*t^6.107*y - 2*t^6.117*y - t^6.136*y + 2*t^7.127*y + 3*t^7.136*y + 4*t^7.146*y + 2*t^7.156*y + 2*t^7.166*y + 2*t^7.175*y + 2*t^7.942*y + 2*t^7.951*y + 4*t^7.961*y + 2*t^7.971*y + 2*t^7.98*y - t^8.156*y - 2*t^8.166*y - 5*t^8.175*y - 4*t^8.185*y - 4*t^8.195*y - 2*t^8.204*y - 2*t^8.214*y - t^8.234*y + 2*t^8.971*y + 4*t^8.981*y + 4*t^8.99*y | (g3*t^2.059)/g2^5 + t^2.068/(g1*g2^3) + (g1*t^2.068)/(g2^4*g3) + (2*t^2.078)/(g2^2*g3^2) + (g2*t^2.097)/g3^5 + g2^3*g3^3*t^2.883 + g1*g3^3*t^3.912 + (g2*g3^4*t^3.912)/g1 + (g3^2*t^4.117)/g2^10 + (g1*t^4.127)/g2^9 + (g3*t^4.127)/(g1*g2^8) + t^4.136/(g1^2*g2^6) + (g1^2*t^4.136)/(g2^8*g3^2) + (3*t^4.136)/(g2^7*g3) + (2*g1*t^4.146)/(g2^6*g3^3) + (2*t^4.146)/(g1*g2^5*g3^2) + (4*t^4.156)/(g2^4*g3^4) + (g1*t^4.166)/(g2^3*g3^6) + t^4.166/(g1*g2^2*g3^5) + (2*t^4.175)/(g2*g3^7) + (g2^2*t^4.195)/g3^10 + (g3^4*t^4.942)/g2^2 + (g1*g3^2*t^4.951)/g2 + (g3^3*t^4.951)/g1 + 3*g2*g3*t^4.961 + (g2^4*t^4.98)/g3^2 + g2^6*g3^6*t^5.766 + (g1*g3^4*t^5.971)/g2^5 + (g3^5*t^5.971)/(g1*g2^4) + (g1^2*g3^2*t^5.981)/g2^4 + (g3^3*t^5.981)/g2^3 + (g3^4*t^5.981)/(g1^2*g2^2) + (g1*g3*t^5.99)/g2^2 + (g3^2*t^5.99)/(g1*g2) - 3*t^6. - (g2^3*t^6.019)/g3^3 + (g3^3*t^6.176)/g2^15 + (g1*g3*t^6.185)/g2^14 + (g3^2*t^6.185)/(g1*g2^13) + (3*t^6.195)/g2^12 + (g1^2*t^6.195)/(g2^13*g3) + (g3*t^6.195)/(g1^2*g2^11) + t^6.205/(g1^3*g2^9) + (g1^3*t^6.205)/(g2^12*g3^3) + (3*g1*t^6.205)/(g2^11*g3^2) + (3*t^6.205)/(g1*g2^10*g3) + (2*g1^2*t^6.214)/(g2^10*g3^4) + (6*t^6.214)/(g2^9*g3^3) + (2*t^6.214)/(g1^2*g2^8*g3^2) + (4*g1*t^6.224)/(g2^8*g3^5) + (4*t^6.224)/(g1*g2^7*g3^4) + (g1^2*t^6.234)/(g2^7*g3^7) + (7*t^6.234)/(g2^6*g3^6) + t^6.234/(g1^2*g2^5*g3^5) + (2*g1*t^6.243)/(g2^5*g3^8) + (2*t^6.243)/(g1*g2^4*g3^7) + (4*t^6.253)/(g2^3*g3^9) + (g1*t^6.263)/(g2^2*g3^11) + t^6.263/(g1*g2*g3^10) + (2*t^6.272)/g3^12 + (g2^3*t^6.292)/g3^15 + g1*g2^3*g3^6*t^6.796 + (g2^4*g3^7*t^6.796)/g1 + (g3^5*t^7.)/g2^7 + (g1*g3^3*t^7.01)/g2^6 + (g3^4*t^7.01)/(g1*g2^5) + (g1^2*g3*t^7.02)/g2^5 + (3*g3^2*t^7.02)/g2^4 + (g3^3*t^7.02)/(g1^2*g2^3) + (2*g1*t^7.029)/g2^3 + (2*g3*t^7.029)/(g1*g2^2) + (4*t^7.039)/(g2*g3) + (2*g2^2*t^7.058)/g3^4 + (g2^5*t^7.078)/g3^7 + g1^2*g3^6*t^7.825 + g2*g3^7*t^7.825 + (g2^2*g3^8*t^7.825)/g1^2 - g1*g2^5*g3^2*t^7.854 - (g2^6*g3^3*t^7.854)/g1 + (g1*g3^5*t^8.029)/g2^10 + (g3^6*t^8.029)/(g1*g2^9) + (g1^2*g3^3*t^8.039)/g2^9 + (g3^4*t^8.039)/g2^8 + (g3^5*t^8.039)/(g1^2*g2^7) + (g1^3*g3*t^8.049)/g2^8 + (2*g1*g3^2*t^8.049)/g2^7 + (2*g3^3*t^8.049)/(g1*g2^6) + (g3^4*t^8.049)/(g1^3*g2^5) + (g1^2*t^8.059)/g2^6 - (3*g3*t^8.059)/g2^5 + (g3^2*t^8.059)/(g1^2*g2^4) - (2*t^8.068)/(g1*g2^3) - (2*g1*t^8.068)/(g2^4*g3) - (7*t^8.078)/(g2^2*g3^2) - (2*g1*t^8.088)/(g2*g3^4) - (2*t^8.088)/(g1*g3^3) - (5*g2*t^8.097)/g3^5 - (g2^4*t^8.117)/g3^8 + (g3^4*t^8.234)/g2^20 + (g1*g3^2*t^8.244)/g2^19 + (g3^3*t^8.244)/(g1*g2^18) + (g1^2*t^8.254)/g2^18 + (3*g3*t^8.254)/g2^17 + (g3^2*t^8.254)/(g1^2*g2^16) + (3*t^8.263)/(g1*g2^15) + (g1^3*t^8.263)/(g2^17*g3^2) + (3*g1*t^8.263)/(g2^16*g3) + (g3*t^8.263)/(g1^3*g2^14) + t^8.273/(g1^4*g2^12) + (g1^4*t^8.273)/(g2^16*g3^4) + (3*g1^2*t^8.273)/(g2^15*g3^3) + (7*t^8.273)/(g2^14*g3^2) + (3*t^8.273)/(g1^2*g2^13*g3) + (2*g1^3*t^8.283)/(g2^14*g3^5) + (6*g1*t^8.283)/(g2^13*g3^4) + (6*t^8.283)/(g1*g2^12*g3^3) + (2*t^8.283)/(g1^3*g2^11*g3^2) + (4*g1^2*t^8.292)/(g2^12*g3^6) + (10*t^8.292)/(g2^11*g3^5) + (4*t^8.292)/(g1^2*g2^10*g3^4) + (g1^3*t^8.302)/(g2^11*g3^8) + (7*g1*t^8.302)/(g2^10*g3^7) + (7*t^8.302)/(g1*g2^9*g3^6) + t^8.302/(g1^3*g2^8*g3^5) + (2*g1^2*t^8.312)/(g2^9*g3^9) + (11*t^8.312)/(g2^8*g3^8) + (2*t^8.312)/(g1^2*g2^7*g3^7) + (4*g1*t^8.321)/(g2^7*g3^10) + (4*t^8.321)/(g1*g2^6*g3^9) + (g1^2*t^8.331)/(g2^6*g3^12) + (7*t^8.331)/(g2^5*g3^11) + t^8.331/(g1^2*g2^4*g3^10) + (2*g1*t^8.341)/(g2^4*g3^13) + (2*t^8.341)/(g1*g2^3*g3^12) + (4*t^8.35)/(g2^2*g3^14) + (g1*t^8.36)/(g2*g3^16) + t^8.36/(g1*g3^15) + (2*g2*t^8.37)/g3^17 + (g2^4*t^8.389)/g3^20 + g2^9*g3^9*t^8.649 + (g1*g3^7*t^8.854)/g2^2 + (g3^8*t^8.854)/(g1*g2) + (g1^2*g3^5*t^8.864)/g2 + (g2*g3^7*t^8.864)/g1^2 + g1*g2*g3^4*t^8.873 + (g2^2*g3^5*t^8.873)/g1 - 5*g2^3*g3^3*t^8.883 - g1*g2^4*g3*t^8.893 - (g2^5*g3^2*t^8.893)/g1 - 2*g2^6*t^8.902 - t^4.039/(g2*g3*y) - t^6.098/(g2^6*y) - (g1*t^6.107)/(g2^5*g3^2*y) - t^6.107/(g1*g2^4*g3*y) - (2*t^6.117)/(g2^3*g3^3*y) - t^6.136/(g3^6*y) + (g1*t^7.127)/(g2^9*y) + (g3*t^7.127)/(g1*g2^8*y) + (3*t^7.136)/(g2^7*g3*y) + (2*g1*t^7.146)/(g2^6*g3^3*y) + (2*t^7.146)/(g1*g2^5*g3^2*y) + (2*t^7.156)/(g2^4*g3^4*y) + (g1*t^7.166)/(g2^3*g3^6*y) + t^7.166/(g1*g2^2*g3^5*y) + (2*t^7.175)/(g2*g3^7*y) + (2*g3^4*t^7.942)/(g2^2*y) + (g1*g3^2*t^7.951)/(g2*y) + (g3^3*t^7.951)/(g1*y) + (4*g2*g3*t^7.961)/y + (g2^3*t^7.971)/(g1*y) + (g1*g2^2*t^7.971)/(g3*y) + (2*g2^4*t^7.98)/(g3^2*y) - (g3*t^8.156)/(g2^11*y) - t^8.166/(g1*g2^9*y) - (g1*t^8.166)/(g2^10*g3*y) - (g1^2*t^8.175)/(g2^9*g3^3*y) - (3*t^8.175)/(g2^8*g3^2*y) - t^8.175/(g1^2*g2^7*g3*y) - (2*g1*t^8.185)/(g2^7*g3^4*y) - (2*t^8.185)/(g1*g2^6*g3^3*y) - (4*t^8.195)/(g2^5*g3^5*y) - (g1*t^8.204)/(g2^4*g3^7*y) - t^8.204/(g1*g2^3*g3^6*y) - (2*t^8.214)/(g2^2*g3^8*y) - (g2*t^8.234)/(g3^11*y) + (g1*g3^4*t^8.971)/(g2^5*y) + (g3^5*t^8.971)/(g1*g2^4*y) + (g1^2*g3^2*t^8.981)/(g2^4*y) + (2*g3^3*t^8.981)/(g2^3*y) + (g3^4*t^8.981)/(g1^2*g2^2*y) + (2*g1*g3*t^8.99)/(g2^2*y) + (2*g3^2*t^8.99)/(g1*g2*y) - (t^4.039*y)/(g2*g3) - (t^6.098*y)/g2^6 - (g1*t^6.107*y)/(g2^5*g3^2) - (t^6.107*y)/(g1*g2^4*g3) - (2*t^6.117*y)/(g2^3*g3^3) - (t^6.136*y)/g3^6 + (g1*t^7.127*y)/g2^9 + (g3*t^7.127*y)/(g1*g2^8) + (3*t^7.136*y)/(g2^7*g3) + (2*g1*t^7.146*y)/(g2^6*g3^3) + (2*t^7.146*y)/(g1*g2^5*g3^2) + (2*t^7.156*y)/(g2^4*g3^4) + (g1*t^7.166*y)/(g2^3*g3^6) + (t^7.166*y)/(g1*g2^2*g3^5) + (2*t^7.175*y)/(g2*g3^7) + (2*g3^4*t^7.942*y)/g2^2 + (g1*g3^2*t^7.951*y)/g2 + (g3^3*t^7.951*y)/g1 + 4*g2*g3*t^7.961*y + (g2^3*t^7.971*y)/g1 + (g1*g2^2*t^7.971*y)/g3 + (2*g2^4*t^7.98*y)/g3^2 - (g3*t^8.156*y)/g2^11 - (t^8.166*y)/(g1*g2^9) - (g1*t^8.166*y)/(g2^10*g3) - (g1^2*t^8.175*y)/(g2^9*g3^3) - (3*t^8.175*y)/(g2^8*g3^2) - (t^8.175*y)/(g1^2*g2^7*g3) - (2*g1*t^8.185*y)/(g2^7*g3^4) - (2*t^8.185*y)/(g1*g2^6*g3^3) - (4*t^8.195*y)/(g2^5*g3^5) - (g1*t^8.204*y)/(g2^4*g3^7) - (t^8.204*y)/(g1*g2^3*g3^6) - (2*t^8.214*y)/(g2^2*g3^8) - (g2*t^8.234*y)/g3^11 + (g1*g3^4*t^8.971*y)/g2^5 + (g3^5*t^8.971*y)/(g1*g2^4) + (g1^2*g3^2*t^8.981*y)/g2^4 + (2*g3^3*t^8.981*y)/g2^3 + (g3^4*t^8.981*y)/(g1^2*g2^2) + (2*g1*g3*t^8.99*y)/g2^2 + (2*g3^2*t^8.99*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
474 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }M_{2}X_{1}$ | 0.606 | 0.7574 | 0.8002 | [X:[1.4386], M:[1.0179, 0.5614, 0.736, 0.7718, 0.9821], q:[0.6661, 0.948], qb:[0.316, 0.5264], phi:[0.3859]] | t^2.208 + 2*t^2.315 + t^2.527 + t^2.946 + t^3.054 + t^3.577 + t^4.316 + t^4.416 + t^4.423 + 2*t^4.523 + 3*t^4.631 + t^4.735 + 3*t^4.842 + t^5.054 + t^5.154 + 2*t^5.262 + t^5.369 + t^5.473 + t^5.581 + t^5.785 + 2*t^5.893 - 2*t^6. - t^4.158/y - t^4.158*y | detail | |
476 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{6}$ | 0.6898 | 0.8768 | 0.7867 | [M:[0.6887, 0.72, 0.6887, 0.6991, 0.6783, 1.28], q:[0.8252, 0.8252], qb:[0.4861, 0.4652], phi:[0.3496]] | t^2.035 + 2*t^2.066 + 2*t^2.097 + t^2.854 + t^3.84 + 2*t^3.871 + t^4.07 + 2*t^4.101 + 5*t^4.132 + 4*t^4.164 + 3*t^4.195 + t^4.889 + 2*t^4.92 + 3*t^4.951 + t^5.708 + t^5.875 + 4*t^5.906 + 5*t^5.938 + 2*t^5.969 - 3*t^6. - t^4.049/y - t^4.049*y | detail | |
473 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}^{2}$ + ${ }M_{2}X_{1}$ | 0.6177 | 0.7659 | 0.8065 | [X:[1.5134], M:[0.8717, 0.4866, 0.8717, 0.7433, 1.0], q:[0.8142, 0.8142], qb:[0.3142, 0.5709], phi:[0.3717]] | 2*t^2.23 + 2*t^2.615 + t^2.655 + t^3. + 2*t^4.155 + 3*t^4.46 + t^4.54 + 4*t^4.845 + 3*t^4.885 + 4*t^5.23 + 2*t^5.27 + t^5.31 + t^5.655 - 2*t^6. - t^4.115/y - t^4.115*y | detail | |
1769 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7308 | 0.9552 | 0.7651 | [M:[0.6836, 0.6937, 0.6937, 0.6903, 0.687, 0.687], q:[0.8324, 0.8224], qb:[0.4839, 0.4806], phi:[0.3452]] | t^2.051 + 2*t^2.061 + 2*t^2.071 + 2*t^2.081 + t^2.894 + t^3.909 + t^4.102 + 2*t^4.112 + 5*t^4.122 + 6*t^4.132 + 7*t^4.142 + 4*t^4.152 + 3*t^4.162 + t^4.945 + 2*t^4.955 + 3*t^4.965 + 2*t^4.975 + t^5.787 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - t^4.035/y - t^4.035*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
191 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6895 | 0.8743 | 0.7886 | [M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.8263, 0.8263], qb:[0.4789, 0.4789], phi:[0.3474]] | 5*t^2.084 + t^2.873 + 3*t^3.916 + 15*t^4.169 + 6*t^4.958 + t^5.747 + 6*t^6. - t^4.042/y - t^4.042*y | detail |