Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
302 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ 0.7102 0.9148 0.7763 [X:[], M:[0.6894, 0.6991, 0.6894, 0.6926, 0.6862], q:[0.8268, 0.8268], qb:[0.4837, 0.4773], phi:[0.3463]] [X:[], M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -2, -2], [0, -5, 1]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_3$, $ M_1$, $ M_4$, $ \phi_1^2$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_5^2$, $ M_1M_5$, $ M_3M_5$, $ M_3^2$, $ M_1^2$, $ M_1M_3$, $ M_4M_5$, $ M_5\phi_1^2$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_3M_4$, $ M_3\phi_1^2$, $ M_4^2$, $ M_2M_5$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_2$, $ M_2M_3$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_2^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_2$ . -3 t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.1 + t^2.88 + 2*t^3.91 + t^4.12 + 2*t^4.13 + 5*t^4.14 + 4*t^4.15 + 4*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.94 + 2*t^4.95 + 3*t^4.96 + t^4.98 + t^5.77 + 2*t^5.97 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^6.02 + t^6.18 + 2*t^6.19 + 13*t^6.2 + 10*t^6.21 + 8*t^6.22 + 9*t^6.23 + 4*t^6.24 + 4*t^6.25 + 2*t^6.26 + 2*t^6.27 + t^6.29 + 2*t^6.8 + t^7. + 2*t^7.01 + 5*t^7.02 + 4*t^7.03 + 4*t^7.04 + 2*t^7.06 + t^7.08 + 3*t^7.82 - 2*t^7.85 + 2*t^8.03 + 3*t^8.04 + 6*t^8.05 - t^8.06 - 4*t^8.07 - 7*t^8.08 - 4*t^8.09 - 5*t^8.1 - t^8.12 + t^8.23 + 2*t^8.24 + 5*t^8.25 + 8*t^8.26 + 15*t^8.27 + 16*t^8.28 + 18*t^8.29 + 16*t^8.3 + 15*t^8.31 + 8*t^8.32 + 9*t^8.33 + 4*t^8.34 + 4*t^8.35 + 2*t^8.36 + 2*t^8.37 + t^8.39 + t^8.65 + 2*t^8.85 + 2*t^8.86 + 2*t^8.87 - 5*t^8.88 - 2*t^8.89 - 2*t^8.9 - t^4.04/y - t^6.1/y - (2*t^6.11)/y - (2*t^6.12)/y - t^6.14/y + (2*t^7.13)/y + (3*t^7.14)/y + (4*t^7.15)/y + (2*t^7.16)/y + (2*t^7.17)/y + (2*t^7.18)/y + (2*t^7.94)/y + (2*t^7.95)/y + (4*t^7.96)/y + (2*t^7.97)/y + (2*t^7.98)/y - t^8.16/y - (2*t^8.17)/y - (5*t^8.18)/y - (8*t^8.19)/y - (2*t^8.2)/y - (2*t^8.21)/y - t^8.23/y + (2*t^8.97)/y + (4*t^8.98)/y + (4*t^8.99)/y - t^4.04*y - t^6.1*y - 2*t^6.11*y - 2*t^6.12*y - t^6.14*y + 2*t^7.13*y + 3*t^7.14*y + 4*t^7.15*y + 2*t^7.16*y + 2*t^7.17*y + 2*t^7.18*y + 2*t^7.94*y + 2*t^7.95*y + 4*t^7.96*y + 2*t^7.97*y + 2*t^7.98*y - t^8.16*y - 2*t^8.17*y - 5*t^8.18*y - 8*t^8.19*y - 2*t^8.2*y - 2*t^8.21*y - t^8.23*y + 2*t^8.97*y + 4*t^8.98*y + 4*t^8.99*y (g3*t^2.06)/g2^5 + t^2.07/(g1*g2^3) + (g1*t^2.07)/(g2^4*g3) + (2*t^2.08)/(g2^2*g3^2) + (g2*t^2.1)/g3^5 + g2^3*g3^3*t^2.88 + g1*g3^3*t^3.91 + (g2*g3^4*t^3.91)/g1 + (g3^2*t^4.12)/g2^10 + (g1*t^4.13)/g2^9 + (g3*t^4.13)/(g1*g2^8) + t^4.14/(g1^2*g2^6) + (g1^2*t^4.14)/(g2^8*g3^2) + (3*t^4.14)/(g2^7*g3) + (2*g1*t^4.15)/(g2^6*g3^3) + (2*t^4.15)/(g1*g2^5*g3^2) + (4*t^4.16)/(g2^4*g3^4) + (g1*t^4.17)/(g2^3*g3^6) + t^4.17/(g1*g2^2*g3^5) + (2*t^4.18)/(g2*g3^7) + (g2^2*t^4.19)/g3^10 + (g3^4*t^4.94)/g2^2 + (g1*g3^2*t^4.95)/g2 + (g3^3*t^4.95)/g1 + 3*g2*g3*t^4.96 + (g2^4*t^4.98)/g3^2 + g2^6*g3^6*t^5.77 + (g1*g3^4*t^5.97)/g2^5 + (g3^5*t^5.97)/(g1*g2^4) + (g1^2*g3^2*t^5.98)/g2^4 + (g3^3*t^5.98)/g2^3 + (g3^4*t^5.98)/(g1^2*g2^2) + (g1*g3*t^5.99)/g2^2 + (g3^2*t^5.99)/(g1*g2) - 3*t^6. - (g2^3*t^6.02)/g3^3 + (g3^3*t^6.18)/g2^15 + (g1*g3*t^6.19)/g2^14 + (g3^2*t^6.19)/(g1*g2^13) + (3*t^6.2)/g2^12 + t^6.2/(g1^3*g2^9) + (g1^3*t^6.2)/(g2^12*g3^3) + (3*g1*t^6.2)/(g2^11*g3^2) + (g1^2*t^6.2)/(g2^13*g3) + (3*t^6.2)/(g1*g2^10*g3) + (g3*t^6.2)/(g1^2*g2^11) + (2*g1^2*t^6.21)/(g2^10*g3^4) + (6*t^6.21)/(g2^9*g3^3) + (2*t^6.21)/(g1^2*g2^8*g3^2) + (4*g1*t^6.22)/(g2^8*g3^5) + (4*t^6.22)/(g1*g2^7*g3^4) + (g1^2*t^6.23)/(g2^7*g3^7) + (7*t^6.23)/(g2^6*g3^6) + t^6.23/(g1^2*g2^5*g3^5) + (2*g1*t^6.24)/(g2^5*g3^8) + (2*t^6.24)/(g1*g2^4*g3^7) + (4*t^6.25)/(g2^3*g3^9) + (g1*t^6.26)/(g2^2*g3^11) + t^6.26/(g1*g2*g3^10) + (2*t^6.27)/g3^12 + (g2^3*t^6.29)/g3^15 + g1*g2^3*g3^6*t^6.8 + (g2^4*g3^7*t^6.8)/g1 + (g3^5*t^7.)/g2^7 + (g1*g3^3*t^7.01)/g2^6 + (g3^4*t^7.01)/(g1*g2^5) + (g1^2*g3*t^7.02)/g2^5 + (3*g3^2*t^7.02)/g2^4 + (g3^3*t^7.02)/(g1^2*g2^3) + (2*g1*t^7.03)/g2^3 + (2*g3*t^7.03)/(g1*g2^2) + (4*t^7.04)/(g2*g3) + (2*g2^2*t^7.06)/g3^4 + (g2^5*t^7.08)/g3^7 + g1^2*g3^6*t^7.82 + g2*g3^7*t^7.82 + (g2^2*g3^8*t^7.82)/g1^2 - g1*g2^5*g3^2*t^7.85 - (g2^6*g3^3*t^7.85)/g1 + (g1*g3^5*t^8.03)/g2^10 + (g3^6*t^8.03)/(g1*g2^9) + (g1^2*g3^3*t^8.04)/g2^9 + (g3^4*t^8.04)/g2^8 + (g3^5*t^8.04)/(g1^2*g2^7) + (g1^3*g3*t^8.05)/g2^8 + (2*g1*g3^2*t^8.05)/g2^7 + (2*g3^3*t^8.05)/(g1*g2^6) + (g3^4*t^8.05)/(g1^3*g2^5) + (g1^2*t^8.06)/g2^6 - (3*g3*t^8.06)/g2^5 + (g3^2*t^8.06)/(g1^2*g2^4) - (2*t^8.07)/(g1*g2^3) - (2*g1*t^8.07)/(g2^4*g3) - (7*t^8.08)/(g2^2*g3^2) - (2*g1*t^8.09)/(g2*g3^4) - (2*t^8.09)/(g1*g3^3) - (5*g2*t^8.1)/g3^5 - (g2^4*t^8.12)/g3^8 + (g3^4*t^8.23)/g2^20 + (g1*g3^2*t^8.24)/g2^19 + (g3^3*t^8.24)/(g1*g2^18) + (g1^2*t^8.25)/g2^18 + (3*g3*t^8.25)/g2^17 + (g3^2*t^8.25)/(g1^2*g2^16) + (3*t^8.26)/(g1*g2^15) + (g1^3*t^8.26)/(g2^17*g3^2) + (3*g1*t^8.26)/(g2^16*g3) + (g3*t^8.26)/(g1^3*g2^14) + t^8.27/(g1^4*g2^12) + (g1^4*t^8.27)/(g2^16*g3^4) + (3*g1^2*t^8.27)/(g2^15*g3^3) + (7*t^8.27)/(g2^14*g3^2) + (3*t^8.27)/(g1^2*g2^13*g3) + (2*g1^3*t^8.28)/(g2^14*g3^5) + (6*g1*t^8.28)/(g2^13*g3^4) + (6*t^8.28)/(g1*g2^12*g3^3) + (2*t^8.28)/(g1^3*g2^11*g3^2) + (4*g1^2*t^8.29)/(g2^12*g3^6) + (10*t^8.29)/(g2^11*g3^5) + (4*t^8.29)/(g1^2*g2^10*g3^4) + (g1^3*t^8.3)/(g2^11*g3^8) + (7*g1*t^8.3)/(g2^10*g3^7) + (7*t^8.3)/(g1*g2^9*g3^6) + t^8.3/(g1^3*g2^8*g3^5) + (2*g1^2*t^8.31)/(g2^9*g3^9) + (11*t^8.31)/(g2^8*g3^8) + (2*t^8.31)/(g1^2*g2^7*g3^7) + (4*g1*t^8.32)/(g2^7*g3^10) + (4*t^8.32)/(g1*g2^6*g3^9) + (g1^2*t^8.33)/(g2^6*g3^12) + (7*t^8.33)/(g2^5*g3^11) + t^8.33/(g1^2*g2^4*g3^10) + (2*g1*t^8.34)/(g2^4*g3^13) + (2*t^8.34)/(g1*g2^3*g3^12) + (4*t^8.35)/(g2^2*g3^14) + (g1*t^8.36)/(g2*g3^16) + t^8.36/(g1*g3^15) + (2*g2*t^8.37)/g3^17 + (g2^4*t^8.39)/g3^20 + g2^9*g3^9*t^8.65 + (g1*g3^7*t^8.85)/g2^2 + (g3^8*t^8.85)/(g1*g2) + (g1^2*g3^5*t^8.86)/g2 + (g2*g3^7*t^8.86)/g1^2 + g1*g2*g3^4*t^8.87 + (g2^2*g3^5*t^8.87)/g1 - 5*g2^3*g3^3*t^8.88 - g1*g2^4*g3*t^8.89 - (g2^5*g3^2*t^8.89)/g1 - 2*g2^6*t^8.9 - t^4.04/(g2*g3*y) - t^6.1/(g2^6*y) - (g1*t^6.11)/(g2^5*g3^2*y) - t^6.11/(g1*g2^4*g3*y) - (2*t^6.12)/(g2^3*g3^3*y) - t^6.14/(g3^6*y) + (g1*t^7.13)/(g2^9*y) + (g3*t^7.13)/(g1*g2^8*y) + (3*t^7.14)/(g2^7*g3*y) + (2*g1*t^7.15)/(g2^6*g3^3*y) + (2*t^7.15)/(g1*g2^5*g3^2*y) + (2*t^7.16)/(g2^4*g3^4*y) + (g1*t^7.17)/(g2^3*g3^6*y) + t^7.17/(g1*g2^2*g3^5*y) + (2*t^7.18)/(g2*g3^7*y) + (2*g3^4*t^7.94)/(g2^2*y) + (g1*g3^2*t^7.95)/(g2*y) + (g3^3*t^7.95)/(g1*y) + (4*g2*g3*t^7.96)/y + (g2^3*t^7.97)/(g1*y) + (g1*g2^2*t^7.97)/(g3*y) + (2*g2^4*t^7.98)/(g3^2*y) - (g3*t^8.16)/(g2^11*y) - t^8.17/(g1*g2^9*y) - (g1*t^8.17)/(g2^10*g3*y) - (g1^2*t^8.18)/(g2^9*g3^3*y) - (3*t^8.18)/(g2^8*g3^2*y) - t^8.18/(g1^2*g2^7*g3*y) - (4*t^8.19)/(g2^5*g3^5*y) - (2*g1*t^8.19)/(g2^7*g3^4*y) - (2*t^8.19)/(g1*g2^6*g3^3*y) - (g1*t^8.2)/(g2^4*g3^7*y) - t^8.2/(g1*g2^3*g3^6*y) - (2*t^8.21)/(g2^2*g3^8*y) - (g2*t^8.23)/(g3^11*y) + (g1*g3^4*t^8.97)/(g2^5*y) + (g3^5*t^8.97)/(g1*g2^4*y) + (g1^2*g3^2*t^8.98)/(g2^4*y) + (2*g3^3*t^8.98)/(g2^3*y) + (g3^4*t^8.98)/(g1^2*g2^2*y) + (2*g1*g3*t^8.99)/(g2^2*y) + (2*g3^2*t^8.99)/(g1*g2*y) - (t^4.04*y)/(g2*g3) - (t^6.1*y)/g2^6 - (g1*t^6.11*y)/(g2^5*g3^2) - (t^6.11*y)/(g1*g2^4*g3) - (2*t^6.12*y)/(g2^3*g3^3) - (t^6.14*y)/g3^6 + (g1*t^7.13*y)/g2^9 + (g3*t^7.13*y)/(g1*g2^8) + (3*t^7.14*y)/(g2^7*g3) + (2*g1*t^7.15*y)/(g2^6*g3^3) + (2*t^7.15*y)/(g1*g2^5*g3^2) + (2*t^7.16*y)/(g2^4*g3^4) + (g1*t^7.17*y)/(g2^3*g3^6) + (t^7.17*y)/(g1*g2^2*g3^5) + (2*t^7.18*y)/(g2*g3^7) + (2*g3^4*t^7.94*y)/g2^2 + (g1*g3^2*t^7.95*y)/g2 + (g3^3*t^7.95*y)/g1 + 4*g2*g3*t^7.96*y + (g2^3*t^7.97*y)/g1 + (g1*g2^2*t^7.97*y)/g3 + (2*g2^4*t^7.98*y)/g3^2 - (g3*t^8.16*y)/g2^11 - (t^8.17*y)/(g1*g2^9) - (g1*t^8.17*y)/(g2^10*g3) - (g1^2*t^8.18*y)/(g2^9*g3^3) - (3*t^8.18*y)/(g2^8*g3^2) - (t^8.18*y)/(g1^2*g2^7*g3) - (4*t^8.19*y)/(g2^5*g3^5) - (2*g1*t^8.19*y)/(g2^7*g3^4) - (2*t^8.19*y)/(g1*g2^6*g3^3) - (g1*t^8.2*y)/(g2^4*g3^7) - (t^8.2*y)/(g1*g2^3*g3^6) - (2*t^8.21*y)/(g2^2*g3^8) - (g2*t^8.23*y)/g3^11 + (g1*g3^4*t^8.97*y)/g2^5 + (g3^5*t^8.97*y)/(g1*g2^4) + (g1^2*g3^2*t^8.98*y)/g2^4 + (2*g3^3*t^8.98*y)/g2^3 + (g3^4*t^8.98*y)/(g1^2*g2^2) + (2*g1*g3*t^8.99*y)/g2^2 + (2*g3^2*t^8.99*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
474 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_1M_5$ + $ M_2X_1$ 0.606 0.7574 0.8002 [X:[1.4386], M:[1.0179, 0.5614, 0.736, 0.7718, 0.9821], q:[0.6661, 0.948], qb:[0.316, 0.5264], phi:[0.3859]] t^2.21 + 2*t^2.32 + t^2.53 + t^2.95 + t^3.05 + t^3.58 + t^4.32 + 2*t^4.42 + 2*t^4.52 + 3*t^4.63 + t^4.74 + 3*t^4.84 + t^5.05 + t^5.15 + 2*t^5.26 + t^5.37 + t^5.47 + t^5.58 + t^5.79 + 2*t^5.89 - 2*t^6. - t^4.16/y - t^4.16*y detail
476 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ 0.6898 0.8768 0.7867 [X:[], M:[0.6887, 0.72, 0.6887, 0.6991, 0.6783, 1.28], q:[0.8252, 0.8252], qb:[0.4861, 0.4652], phi:[0.3496]] t^2.03 + 2*t^2.07 + 2*t^2.1 + t^2.85 + t^3.84 + 2*t^3.87 + t^4.07 + 2*t^4.1 + 5*t^4.13 + 4*t^4.16 + 3*t^4.19 + t^4.89 + 2*t^4.92 + 3*t^4.95 + t^5.71 + t^5.88 + 4*t^5.91 + 5*t^5.94 + 2*t^5.97 - 3*t^6. - t^4.05/y - t^4.05*y detail
473 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_5^2$ + $ M_2X_1$ 0.6177 0.7659 0.8065 [X:[1.5134], M:[0.8717, 0.4866, 0.8717, 0.7433, 1.0], q:[0.8142, 0.8142], qb:[0.3142, 0.5709], phi:[0.3717]] 2*t^2.23 + 2*t^2.61 + t^2.66 + t^3. + 2*t^4.16 + 3*t^4.46 + t^4.54 + 4*t^4.84 + 3*t^4.89 + 4*t^5.23 + 2*t^5.27 + t^5.31 + t^5.66 - 2*t^6. - t^4.11/y - t^4.11*y detail
1769 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ 0.7308 0.9552 0.7651 [X:[], M:[0.6836, 0.6937, 0.6937, 0.6903, 0.687, 0.687], q:[0.8324, 0.8224], qb:[0.4839, 0.4806], phi:[0.3452]] t^2.05 + 2*t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.89 + t^3.91 + t^4.1 + 2*t^4.11 + 5*t^4.12 + 6*t^4.13 + 7*t^4.14 + 4*t^4.15 + 3*t^4.16 + t^4.94 + 2*t^4.95 + 3*t^4.96 + 2*t^4.97 + t^5.79 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - t^4.04/y - t^4.04*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
191 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ 0.6895 0.8743 0.7886 [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.8263, 0.8263], qb:[0.4789, 0.4789], phi:[0.3474]] 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. - t^4.04/y - t^4.04*y detail