Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2770 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ | 0.7515 | 0.9955 | 0.7549 | [M:[0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878], q:[0.828, 0.828], qb:[0.4841, 0.4841], phi:[0.3439]] | [M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -2, -2], [0, -5, 1], [1, -1, -4], [-1, 0, -3]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{6}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -9 | 8*t^2.063 + t^2.905 + 36*t^4.127 + 9*t^4.968 + t^5.81 - 9*t^6. + 120*t^6.19 + 36*t^7.032 - 71*t^8.063 + 330*t^8.254 + t^8.715 - 17*t^8.905 - t^4.032/y - (8*t^6.095)/y + (28*t^7.127)/y + (16*t^7.968)/y - (36*t^8.159)/y - t^4.032*y - 8*t^6.095*y + 28*t^7.127*y + 16*t^7.968*y - 36*t^8.159*y | t^2.063/(g1*g2^3) + (g2*t^2.063)/g3^5 + (g1*t^2.063)/(g2*g3^4) + t^2.063/(g1*g3^3) + (2*t^2.063)/(g2^2*g3^2) + (g1*t^2.063)/(g2^4*g3) + (g3*t^2.063)/g2^5 + g2^3*g3^3*t^2.905 + (g1*t^4.127)/g2^9 + t^4.127/(g1^2*g2^6) + (g2^2*t^4.127)/g3^10 + (g1*t^4.127)/g3^9 + (g1^2*t^4.127)/(g2^2*g3^8) + (g2*t^4.127)/(g1*g3^8) + (3*t^4.127)/(g2*g3^7) + t^4.127/(g1^2*g3^6) + (3*g1*t^4.127)/(g2^3*g3^6) + (g1^2*t^4.127)/(g2^5*g3^5) + (3*t^4.127)/(g1*g2^2*g3^5) + (6*t^4.127)/(g2^4*g3^4) + (3*g1*t^4.127)/(g2^6*g3^3) + t^4.127/(g1^2*g2^3*g3^3) + (g1^2*t^4.127)/(g2^8*g3^2) + (3*t^4.127)/(g1*g2^5*g3^2) + (3*t^4.127)/(g2^7*g3) + (g3*t^4.127)/(g1*g2^8) + (g3^2*t^4.127)/g2^10 + (g2^3*t^4.968)/g1 + (g2^4*t^4.968)/g3^2 + (g1*g2^2*t^4.968)/g3 + 3*g2*g3*t^4.968 + (g1*g3^2*t^4.968)/g2 + (g3^3*t^4.968)/g1 + (g3^4*t^4.968)/g2^2 + g2^6*g3^6*t^5.81 - 3*t^6. - (g2^3*t^6.)/g3^3 - (g1*g2*t^6.)/g3^2 - (g2^2*t^6.)/(g1*g3) - (g1*g3*t^6.)/g2^2 - (g3^2*t^6.)/(g1*g2) - (g3^3*t^6.)/g2^3 + (3*t^6.19)/g2^12 + t^6.19/(g1^3*g2^9) + (g2^3*t^6.19)/g3^15 + (g1*g2*t^6.19)/g3^14 + (g1^2*t^6.19)/(g2*g3^13) + (g2^2*t^6.19)/(g1*g3^13) + (3*t^6.19)/g3^12 + (g1^3*t^6.19)/(g2^3*g3^12) + (4*g1*t^6.19)/(g2^2*g3^11) + (g2*t^6.19)/(g1^2*g3^11) + (3*g1^2*t^6.19)/(g2^4*g3^10) + (4*t^6.19)/(g1*g2*g3^10) + t^6.19/(g1^3*g3^9) + (g1^3*t^6.19)/(g2^6*g3^9) + (8*t^6.19)/(g2^3*g3^9) + (8*g1*t^6.19)/(g2^5*g3^8) + (3*t^6.19)/(g1^2*g2^2*g3^8) + (4*g1^2*t^6.19)/(g2^7*g3^7) + (8*t^6.19)/(g1*g2^4*g3^7) + (g1^3*t^6.19)/(g2^9*g3^6) + (12*t^6.19)/(g2^6*g3^6) + t^6.19/(g1^3*g2^3*g3^6) + (8*g1*t^6.19)/(g2^8*g3^5) + (4*t^6.19)/(g1^2*g2^5*g3^5) + (3*g1^2*t^6.19)/(g2^10*g3^4) + (8*t^6.19)/(g1*g2^7*g3^4) + (g1^3*t^6.19)/(g2^12*g3^3) + (8*t^6.19)/(g2^9*g3^3) + t^6.19/(g1^3*g2^6*g3^3) + (4*g1*t^6.19)/(g2^11*g3^2) + (3*t^6.19)/(g1^2*g2^8*g3^2) + (g1^2*t^6.19)/(g2^13*g3) + (4*t^6.19)/(g1*g2^10*g3) + (g1*g3*t^6.19)/g2^14 + (g3*t^6.19)/(g1^2*g2^11) + (g3^2*t^6.19)/(g1*g2^13) + (g3^3*t^6.19)/g2^15 + t^7.032/g1^2 + (3*g1*t^7.032)/g2^3 + (g2^5*t^7.032)/g3^7 + (g1*g2^3*t^7.032)/g3^6 + (g1^2*g2*t^7.032)/g3^5 + (g2^4*t^7.032)/(g1*g3^5) + (3*g2^2*t^7.032)/g3^4 + (3*g1*t^7.032)/g3^3 + (g2^3*t^7.032)/(g1^2*g3^3) + (g1^2*t^7.032)/(g2^2*g3^2) + (3*g2*t^7.032)/(g1*g3^2) + (6*t^7.032)/(g2*g3) + (g1^2*g3*t^7.032)/g2^5 + (3*g3*t^7.032)/(g1*g2^2) + (3*g3^2*t^7.032)/g2^4 + (g1*g3^3*t^7.032)/g2^6 + (g3^3*t^7.032)/(g1^2*g2^3) + (g3^4*t^7.032)/(g1*g2^5) + (g3^5*t^7.032)/g2^7 - (g1^2*t^8.063)/g2^6 - (7*t^8.063)/(g1*g2^3) - (g2^4*t^8.063)/g3^8 - (2*g1*g2^2*t^8.063)/g3^7 - (g1^2*t^8.063)/g3^6 - (2*g2^3*t^8.063)/(g1*g3^6) - (7*g2*t^8.063)/g3^5 - (7*g1*t^8.063)/(g2*g3^4) - (g2^2*t^8.063)/(g1^2*g3^4) - (7*t^8.063)/(g1*g3^3) - (2*g1^2*t^8.063)/(g2^3*g3^3) - (11*t^8.063)/(g2^2*g3^2) - (7*g1*t^8.063)/(g2^4*g3) - (2*t^8.063)/(g1^2*g2*g3) - (7*g3*t^8.063)/g2^5 - (2*g1*g3^2*t^8.063)/g2^7 - (g3^2*t^8.063)/(g1^2*g2^4) - (2*g3^3*t^8.063)/(g1*g2^6) - (g3^4*t^8.063)/g2^8 + (g1^2*t^8.254)/g2^18 + (4*t^8.254)/(g1*g2^15) + t^8.254/(g1^4*g2^12) + (g2^4*t^8.254)/g3^20 + (g1*g2^2*t^8.254)/g3^19 + (g1^2*t^8.254)/g3^18 + (g2^3*t^8.254)/(g1*g3^18) + (g1^3*t^8.254)/(g2^2*g3^17) + (3*g2*t^8.254)/g3^17 + (g1^4*t^8.254)/(g2^4*g3^16) + (4*g1*t^8.254)/(g2*g3^16) + (g2^2*t^8.254)/(g1^2*g3^16) + (4*t^8.254)/(g1*g3^15) + (4*g1^2*t^8.254)/(g2^3*g3^15) + (3*g1^3*t^8.254)/(g2^5*g3^14) + (9*t^8.254)/(g2^2*g3^14) + (g2*t^8.254)/(g1^3*g3^14) + (g1^4*t^8.254)/(g2^7*g3^13) + (10*g1*t^8.254)/(g2^4*g3^13) + (4*t^8.254)/(g1^2*g2*g3^13) + t^8.254/(g1^4*g3^12) + (9*g1^2*t^8.254)/(g2^6*g3^12) + (10*t^8.254)/(g1*g2^3*g3^12) + (4*g1^3*t^8.254)/(g2^8*g3^11) + (17*t^8.254)/(g2^5*g3^11) + (3*t^8.254)/(g1^3*g2^2*g3^11) + (g1^4*t^8.254)/(g2^10*g3^10) + (17*g1*t^8.254)/(g2^7*g3^10) + (9*t^8.254)/(g1^2*g2^4*g3^10) + (10*g1^2*t^8.254)/(g2^9*g3^9) + (17*t^8.254)/(g1*g2^6*g3^9) + t^8.254/(g1^4*g2^3*g3^9) + (4*g1^3*t^8.254)/(g2^11*g3^8) + (24*t^8.254)/(g2^8*g3^8) + (4*t^8.254)/(g1^3*g2^5*g3^8) + (g1^4*t^8.254)/(g2^13*g3^7) + (17*g1*t^8.254)/(g2^10*g3^7) + (10*t^8.254)/(g1^2*g2^7*g3^7) + (9*g1^2*t^8.254)/(g2^12*g3^6) + (17*t^8.254)/(g1*g2^9*g3^6) + t^8.254/(g1^4*g2^6*g3^6) + (3*g1^3*t^8.254)/(g2^14*g3^5) + (17*t^8.254)/(g2^11*g3^5) + (4*t^8.254)/(g1^3*g2^8*g3^5) + (g1^4*t^8.254)/(g2^16*g3^4) + (10*g1*t^8.254)/(g2^13*g3^4) + (9*t^8.254)/(g1^2*g2^10*g3^4) + (4*g1^2*t^8.254)/(g2^15*g3^3) + (10*t^8.254)/(g1*g2^12*g3^3) + t^8.254/(g1^4*g2^9*g3^3) + (g1^3*t^8.254)/(g2^17*g3^2) + (9*t^8.254)/(g2^14*g3^2) + (3*t^8.254)/(g1^3*g2^11*g3^2) + (4*g1*t^8.254)/(g2^16*g3) + (4*t^8.254)/(g1^2*g2^13*g3) + (3*g3*t^8.254)/g2^17 + (g3*t^8.254)/(g1^3*g2^14) + (g1*g3^2*t^8.254)/g2^19 + (g3^2*t^8.254)/(g1^2*g2^16) + (g3^3*t^8.254)/(g1*g2^18) + (g3^4*t^8.254)/g2^20 + g2^9*g3^9*t^8.715 - 2*g2^6*t^8.905 - 2*g1*g2^4*g3*t^8.905 - (2*g2^5*g3^2*t^8.905)/g1 - 5*g2^3*g3^3*t^8.905 - 2*g1*g2*g3^4*t^8.905 - (2*g2^2*g3^5*t^8.905)/g1 - 2*g3^6*t^8.905 - t^4.032/(g2*g3*y) - t^6.095/(g2^6*y) - t^6.095/(g3^6*y) - (g1*t^6.095)/(g2^2*g3^5*y) - t^6.095/(g1*g2*g3^4*y) - (2*t^6.095)/(g2^3*g3^3*y) - (g1*t^6.095)/(g2^5*g3^2*y) - t^6.095/(g1*g2^4*g3*y) + (g1*t^7.127)/(g2^9*y) + (g1*t^7.127)/(g3^9*y) + (g2*t^7.127)/(g1*g3^8*y) + (3*t^7.127)/(g2*g3^7*y) + (3*g1*t^7.127)/(g2^3*g3^6*y) + (g1^2*t^7.127)/(g2^5*g3^5*y) + (3*t^7.127)/(g1*g2^2*g3^5*y) + (4*t^7.127)/(g2^4*g3^4*y) + (3*g1*t^7.127)/(g2^6*g3^3*y) + t^7.127/(g1^2*g2^3*g3^3*y) + (3*t^7.127)/(g1*g2^5*g3^2*y) + (3*t^7.127)/(g2^7*g3*y) + (g3*t^7.127)/(g1*g2^8*y) + (2*g2^3*t^7.968)/(g1*y) + (2*g2^4*t^7.968)/(g3^2*y) + (2*g1*g2^2*t^7.968)/(g3*y) + (4*g2*g3*t^7.968)/y + (2*g1*g3^2*t^7.968)/(g2*y) + (2*g3^3*t^7.968)/(g1*y) + (2*g3^4*t^7.968)/(g2^2*y) - t^8.159/(g1*g2^9*y) - (g2*t^8.159)/(g3^11*y) - (g1*t^8.159)/(g2*g3^10*y) - t^8.159/(g1*g3^9*y) - (g1^2*t^8.159)/(g2^3*g3^9*y) - (3*t^8.159)/(g2^2*g3^8*y) - (3*g1*t^8.159)/(g2^4*g3^7*y) - t^8.159/(g1^2*g2*g3^7*y) - (g1^2*t^8.159)/(g2^6*g3^6*y) - (3*t^8.159)/(g1*g2^3*g3^6*y) - (6*t^8.159)/(g2^5*g3^5*y) - (3*g1*t^8.159)/(g2^7*g3^4*y) - t^8.159/(g1^2*g2^4*g3^4*y) - (g1^2*t^8.159)/(g2^9*g3^3*y) - (3*t^8.159)/(g1*g2^6*g3^3*y) - (3*t^8.159)/(g2^8*g3^2*y) - (g1*t^8.159)/(g2^10*g3*y) - t^8.159/(g1^2*g2^7*g3*y) - (g3*t^8.159)/(g2^11*y) - (t^4.032*y)/(g2*g3) - (t^6.095*y)/g2^6 - (t^6.095*y)/g3^6 - (g1*t^6.095*y)/(g2^2*g3^5) - (t^6.095*y)/(g1*g2*g3^4) - (2*t^6.095*y)/(g2^3*g3^3) - (g1*t^6.095*y)/(g2^5*g3^2) - (t^6.095*y)/(g1*g2^4*g3) + (g1*t^7.127*y)/g2^9 + (g1*t^7.127*y)/g3^9 + (g2*t^7.127*y)/(g1*g3^8) + (3*t^7.127*y)/(g2*g3^7) + (3*g1*t^7.127*y)/(g2^3*g3^6) + (g1^2*t^7.127*y)/(g2^5*g3^5) + (3*t^7.127*y)/(g1*g2^2*g3^5) + (4*t^7.127*y)/(g2^4*g3^4) + (3*g1*t^7.127*y)/(g2^6*g3^3) + (t^7.127*y)/(g1^2*g2^3*g3^3) + (3*t^7.127*y)/(g1*g2^5*g3^2) + (3*t^7.127*y)/(g2^7*g3) + (g3*t^7.127*y)/(g1*g2^8) + (2*g2^3*t^7.968*y)/g1 + (2*g2^4*t^7.968*y)/g3^2 + (2*g1*g2^2*t^7.968*y)/g3 + 4*g2*g3*t^7.968*y + (2*g1*g3^2*t^7.968*y)/g2 + (2*g3^3*t^7.968*y)/g1 + (2*g3^4*t^7.968*y)/g2^2 - (t^8.159*y)/(g1*g2^9) - (g2*t^8.159*y)/g3^11 - (g1*t^8.159*y)/(g2*g3^10) - (t^8.159*y)/(g1*g3^9) - (g1^2*t^8.159*y)/(g2^3*g3^9) - (3*t^8.159*y)/(g2^2*g3^8) - (3*g1*t^8.159*y)/(g2^4*g3^7) - (t^8.159*y)/(g1^2*g2*g3^7) - (g1^2*t^8.159*y)/(g2^6*g3^6) - (3*t^8.159*y)/(g1*g2^3*g3^6) - (6*t^8.159*y)/(g2^5*g3^5) - (3*g1*t^8.159*y)/(g2^7*g3^4) - (t^8.159*y)/(g1^2*g2^4*g3^4) - (g1^2*t^8.159*y)/(g2^9*g3^3) - (3*t^8.159*y)/(g1*g2^6*g3^3) - (3*t^8.159*y)/(g2^8*g3^2) - (g1*t^8.159*y)/(g2^10*g3) - (t^8.159*y)/(g1^2*g2^7*g3) - (g3*t^8.159*y)/g2^11 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
No data available in table |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
No data available in table |
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Loading... |
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1769 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7308 | 0.9552 | 0.7651 | [M:[0.6836, 0.6937, 0.6937, 0.6903, 0.687, 0.687], q:[0.8324, 0.8224], qb:[0.4839, 0.4806], phi:[0.3452]] | t^2.051 + 2*t^2.061 + 2*t^2.071 + 2*t^2.081 + t^2.894 + t^3.909 + t^4.102 + 2*t^4.112 + 5*t^4.122 + 6*t^4.132 + 7*t^4.142 + 4*t^4.152 + 3*t^4.162 + t^4.945 + 2*t^4.955 + 3*t^4.965 + 2*t^4.975 + t^5.787 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - t^4.035/y - t^4.035*y | detail |