Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46377 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_6\tilde{q}_1\tilde{q}_2$ 0.7308 0.9552 0.7651 [X:[], M:[0.687, 0.687, 0.6836, 0.6937, 0.6903, 0.6937], q:[0.4856, 0.8274], qb:[0.8274, 0.4789], phi:[0.3452]] [X:[], M:[[-4, -3, 1], [-3, -4, 1], [-5, -5, 2], [-1, 0, -1], [-2, -2, 0], [0, -1, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_1$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ M_1M_2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_1^2$, $ M_2M_5$, $ M_3M_6$, $ M_2\phi_1^2$, $ M_3M_4$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_2M_6$, $ M_2M_4$, $ M_5^2$, $ M_1M_6$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_5M_6$, $ M_6\phi_1^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_4^2$, $ M_6^2$, $ M_4M_6$, $ M_3q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_6q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_1\phi_1\tilde{q}_2^2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ $\phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$ -3 t^2.05 + 2*t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.89 + t^3.91 + t^4.1 + 2*t^4.11 + 5*t^4.12 + 6*t^4.13 + 7*t^4.14 + 4*t^4.15 + 3*t^4.16 + t^4.94 + 2*t^4.95 + 3*t^4.96 + 2*t^4.97 + t^5.79 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - 2*t^6.01 - t^6.02 + t^6.15 + 2*t^6.16 + 5*t^6.17 + 10*t^6.18 + 13*t^6.19 + 16*t^6.2 + 15*t^6.21 + 12*t^6.22 + 6*t^6.23 + 4*t^6.24 + t^6.8 + t^7. + 2*t^7.01 + 5*t^7.02 + 6*t^7.03 + 7*t^7.04 + 4*t^7.05 + 2*t^7.06 + t^7.82 - t^7.88 + t^8.01 + 2*t^8.02 + 4*t^8.03 + 2*t^8.04 - 2*t^8.05 - 10*t^8.06 - 11*t^8.07 - 12*t^8.08 - 6*t^8.09 - 2*t^8.1 + t^8.2 + 2*t^8.21 + 5*t^8.22 + 10*t^8.23 + 18*t^8.24 + 24*t^8.25 + 32*t^8.26 + 32*t^8.27 + 32*t^8.28 + 24*t^8.29 + 17*t^8.3 + 8*t^8.31 + 5*t^8.32 + t^8.68 + t^8.85 + 2*t^8.86 + t^8.87 - 2*t^8.88 - 5*t^8.89 - 4*t^8.9 - 2*t^8.91 - t^4.04/y - t^6.09/y - (2*t^6.1)/y - (2*t^6.11)/y - (2*t^6.12)/y + (2*t^7.11)/y + (3*t^7.12)/y + (6*t^7.13)/y + (5*t^7.14)/y + (4*t^7.15)/y + t^7.16/y + t^7.94/y + (4*t^7.95)/y + (4*t^7.96)/y + (4*t^7.97)/y + t^7.98/y - t^8.14/y - (2*t^8.15)/y - (5*t^8.16)/y - (6*t^8.17)/y - (7*t^8.18)/y - (4*t^8.19)/y - (3*t^8.2)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (2*t^8.99)/y - t^4.04*y - t^6.09*y - 2*t^6.1*y - 2*t^6.11*y - 2*t^6.12*y + 2*t^7.11*y + 3*t^7.12*y + 6*t^7.13*y + 5*t^7.14*y + 4*t^7.15*y + t^7.16*y + t^7.94*y + 4*t^7.95*y + 4*t^7.96*y + 4*t^7.97*y + t^7.98*y - t^8.14*y - 2*t^8.15*y - 5*t^8.16*y - 6*t^8.17*y - 7*t^8.18*y - 4*t^8.19*y - 3*t^8.2*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 2*t^8.99*y (g3^2*t^2.05)/(g1^5*g2^5) + (g3*t^2.06)/(g1^3*g2^4) + (g3*t^2.06)/(g1^4*g2^3) + (2*t^2.07)/(g1^2*g2^2) + t^2.08/(g1*g3) + t^2.08/(g2*g3) + g1^3*g2^3*t^2.89 + (g3^2*t^3.91)/(g1*g2) + (g3^4*t^4.1)/(g1^10*g2^10) + (g3^3*t^4.11)/(g1^8*g2^9) + (g3^3*t^4.11)/(g1^9*g2^8) + (g3^2*t^4.12)/(g1^6*g2^8) + (3*g3^2*t^4.12)/(g1^7*g2^7) + (g3^2*t^4.12)/(g1^8*g2^6) + (3*g3*t^4.13)/(g1^5*g2^6) + (3*g3*t^4.13)/(g1^6*g2^5) + t^4.14/(g1^3*g2^5) + (5*t^4.14)/(g1^4*g2^4) + t^4.14/(g1^5*g2^3) + (2*t^4.15)/(g1^2*g2^3*g3) + (2*t^4.15)/(g1^3*g2^2*g3) + t^4.16/(g1^2*g3^2) + t^4.16/(g2^2*g3^2) + t^4.16/(g1*g2*g3^2) + (g3^2*t^4.94)/(g1^2*g2^2) + (g3*t^4.95)/g1 + (g3*t^4.95)/g2 + 3*g1*g2*t^4.96 + (g1^3*g2^2*t^4.97)/g3 + (g1^2*g2^3*t^4.97)/g3 + g1^6*g2^6*t^5.79 + (g3^4*t^5.96)/(g1^6*g2^6) + (g3^3*t^5.97)/(g1^4*g2^5) + (g3^3*t^5.97)/(g1^5*g2^4) + (g3^2*t^5.98)/(g1^3*g2^3) - 3*t^6. - (g1^2*g2*t^6.01)/g3 - (g1*g2^2*t^6.01)/g3 - (g1^3*g2^3*t^6.02)/g3^2 + (g3^6*t^6.15)/(g1^15*g2^15) + (g3^5*t^6.16)/(g1^13*g2^14) + (g3^5*t^6.16)/(g1^14*g2^13) + (g3^4*t^6.17)/(g1^11*g2^13) + (3*g3^4*t^6.17)/(g1^12*g2^12) + (g3^4*t^6.17)/(g1^13*g2^11) + (g3^3*t^6.18)/(g1^9*g2^12) + (4*g3^3*t^6.18)/(g1^10*g2^11) + (4*g3^3*t^6.18)/(g1^11*g2^10) + (g3^3*t^6.18)/(g1^12*g2^9) + (3*g3^2*t^6.19)/(g1^8*g2^10) + (7*g3^2*t^6.19)/(g1^9*g2^9) + (3*g3^2*t^6.19)/(g1^10*g2^8) + (g3*t^6.2)/(g1^6*g2^9) + (7*g3*t^6.2)/(g1^7*g2^8) + (7*g3*t^6.2)/(g1^8*g2^7) + (g3*t^6.2)/(g1^9*g2^6) + (3*t^6.21)/(g1^5*g2^7) + (9*t^6.21)/(g1^6*g2^6) + (3*t^6.21)/(g1^7*g2^5) + t^6.22/(g1^3*g2^6*g3) + (5*t^6.22)/(g1^4*g2^5*g3) + (5*t^6.22)/(g1^5*g2^4*g3) + t^6.22/(g1^6*g2^3*g3) + (2*t^6.23)/(g1^2*g2^4*g3^2) + (2*t^6.23)/(g1^3*g2^3*g3^2) + (2*t^6.23)/(g1^4*g2^2*g3^2) + t^6.24/(g1^3*g3^3) + t^6.24/(g2^3*g3^3) + t^6.24/(g1*g2^2*g3^3) + t^6.24/(g1^2*g2*g3^3) + g1^2*g2^2*g3^2*t^6.8 + (g3^4*t^7.)/(g1^7*g2^7) + (g3^3*t^7.01)/(g1^5*g2^6) + (g3^3*t^7.01)/(g1^6*g2^5) + (g3^2*t^7.02)/(g1^3*g2^5) + (3*g3^2*t^7.02)/(g1^4*g2^4) + (g3^2*t^7.02)/(g1^5*g2^3) + (3*g3*t^7.03)/(g1^2*g2^3) + (3*g3*t^7.03)/(g1^3*g2^2) + t^7.04/g1^2 + t^7.04/g2^2 + (5*t^7.04)/(g1*g2) + (2*g1*t^7.05)/g3 + (2*g2*t^7.05)/g3 + (g1^3*g2*t^7.06)/g3^2 + (g1*g2^3*t^7.06)/g3^2 + (g3^4*t^7.82)/(g1^2*g2^2) - (g1^7*g2^7*t^7.88)/g3^2 + (g3^6*t^8.01)/(g1^11*g2^11) + (g3^5*t^8.02)/(g1^9*g2^10) + (g3^5*t^8.02)/(g1^10*g2^9) + (g3^4*t^8.03)/(g1^7*g2^9) + (2*g3^4*t^8.03)/(g1^8*g2^8) + (g3^4*t^8.03)/(g1^9*g2^7) + (g3^3*t^8.04)/(g1^6*g2^7) + (g3^3*t^8.04)/(g1^7*g2^6) - (2*g3^2*t^8.05)/(g1^5*g2^5) - (5*g3*t^8.06)/(g1^3*g2^4) - (5*g3*t^8.06)/(g1^4*g2^3) - t^8.07/(g1*g2^3) - (9*t^8.07)/(g1^2*g2^2) - t^8.07/(g1^3*g2) - (6*t^8.08)/(g1*g3) - (6*t^8.08)/(g2*g3) - (g1^2*t^8.09)/g3^2 - (4*g1*g2*t^8.09)/g3^2 - (g2^2*t^8.09)/g3^2 - (g1^3*g2^2*t^8.1)/g3^3 - (g1^2*g2^3*t^8.1)/g3^3 + (g3^8*t^8.2)/(g1^20*g2^20) + (g3^7*t^8.21)/(g1^18*g2^19) + (g3^7*t^8.21)/(g1^19*g2^18) + (g3^6*t^8.22)/(g1^16*g2^18) + (3*g3^6*t^8.22)/(g1^17*g2^17) + (g3^6*t^8.22)/(g1^18*g2^16) + (g3^5*t^8.23)/(g1^14*g2^17) + (4*g3^5*t^8.23)/(g1^15*g2^16) + (4*g3^5*t^8.23)/(g1^16*g2^15) + (g3^5*t^8.23)/(g1^17*g2^14) + (g3^4*t^8.24)/(g1^12*g2^16) + (4*g3^4*t^8.24)/(g1^13*g2^15) + (8*g3^4*t^8.24)/(g1^14*g2^14) + (4*g3^4*t^8.24)/(g1^15*g2^13) + (g3^4*t^8.24)/(g1^16*g2^12) + (3*g3^3*t^8.25)/(g1^11*g2^14) + (9*g3^3*t^8.25)/(g1^12*g2^13) + (9*g3^3*t^8.25)/(g1^13*g2^12) + (3*g3^3*t^8.25)/(g1^14*g2^11) + (g3^2*t^8.26)/(g1^9*g2^13) + (8*g3^2*t^8.26)/(g1^10*g2^12) + (14*g3^2*t^8.26)/(g1^11*g2^11) + (8*g3^2*t^8.26)/(g1^12*g2^10) + (g3^2*t^8.26)/(g1^13*g2^9) + (3*g3*t^8.27)/(g1^8*g2^11) + (13*g3*t^8.27)/(g1^9*g2^10) + (13*g3*t^8.27)/(g1^10*g2^9) + (3*g3*t^8.27)/(g1^11*g2^8) + t^8.28/(g1^6*g2^10) + (7*t^8.28)/(g1^7*g2^9) + (16*t^8.28)/(g1^8*g2^8) + (7*t^8.28)/(g1^9*g2^7) + t^8.28/(g1^10*g2^6) + (3*t^8.29)/(g1^5*g2^8*g3) + (9*t^8.29)/(g1^6*g2^7*g3) + (9*t^8.29)/(g1^7*g2^6*g3) + (3*t^8.29)/(g1^8*g2^5*g3) + t^8.3/(g1^3*g2^7*g3^2) + (5*t^8.3)/(g1^4*g2^6*g3^2) + (5*t^8.3)/(g1^5*g2^5*g3^2) + (5*t^8.3)/(g1^6*g2^4*g3^2) + t^8.3/(g1^7*g2^3*g3^2) + (2*t^8.31)/(g1^2*g2^5*g3^3) + (2*t^8.31)/(g1^3*g2^4*g3^3) + (2*t^8.31)/(g1^4*g2^3*g3^3) + (2*t^8.31)/(g1^5*g2^2*g3^3) + t^8.32/(g1^4*g3^4) + t^8.32/(g2^4*g3^4) + t^8.32/(g1*g2^3*g3^4) + t^8.32/(g1^2*g2^2*g3^4) + t^8.32/(g1^3*g2*g3^4) + g1^9*g2^9*t^8.68 + (g3^4*t^8.85)/(g1^3*g2^3) + (g3^3*t^8.86)/(g1*g2^2) + (g3^3*t^8.86)/(g1^2*g2) + g3^2*t^8.87 - g1^2*g2*g3*t^8.88 - g1*g2^2*g3*t^8.88 - 5*g1^3*g2^3*t^8.89 - (2*g1^5*g2^4*t^8.9)/g3 - (2*g1^4*g2^5*t^8.9)/g3 - (2*g1^6*g2^6*t^8.91)/g3^2 - t^4.04/(g1*g2*y) - (g3^2*t^6.09)/(g1^6*g2^6*y) - (g3*t^6.1)/(g1^4*g2^5*y) - (g3*t^6.1)/(g1^5*g2^4*y) - (2*t^6.11)/(g1^3*g2^3*y) - t^6.12/(g1*g2^2*g3*y) - t^6.12/(g1^2*g2*g3*y) + (g3^3*t^7.11)/(g1^8*g2^9*y) + (g3^3*t^7.11)/(g1^9*g2^8*y) + (3*g3^2*t^7.12)/(g1^7*g2^7*y) + (3*g3*t^7.13)/(g1^5*g2^6*y) + (3*g3*t^7.13)/(g1^6*g2^5*y) + t^7.14/(g1^3*g2^5*y) + (3*t^7.14)/(g1^4*g2^4*y) + t^7.14/(g1^5*g2^3*y) + (2*t^7.15)/(g1^2*g2^3*g3*y) + (2*t^7.15)/(g1^3*g2^2*g3*y) + t^7.16/(g1*g2*g3^2*y) + (g3^2*t^7.94)/(g1^2*g2^2*y) + (2*g3*t^7.95)/(g1*y) + (2*g3*t^7.95)/(g2*y) + (4*g1*g2*t^7.96)/y + (2*g1^3*g2^2*t^7.97)/(g3*y) + (2*g1^2*g2^3*t^7.97)/(g3*y) + (g1^4*g2^4*t^7.98)/(g3^2*y) - (g3^4*t^8.14)/(g1^11*g2^11*y) - (g3^3*t^8.15)/(g1^9*g2^10*y) - (g3^3*t^8.15)/(g1^10*g2^9*y) - (g3^2*t^8.16)/(g1^7*g2^9*y) - (3*g3^2*t^8.16)/(g1^8*g2^8*y) - (g3^2*t^8.16)/(g1^9*g2^7*y) - (3*g3*t^8.17)/(g1^6*g2^7*y) - (3*g3*t^8.17)/(g1^7*g2^6*y) - t^8.18/(g1^4*g2^6*y) - (5*t^8.18)/(g1^5*g2^5*y) - t^8.18/(g1^6*g2^4*y) - (2*t^8.19)/(g1^3*g2^4*g3*y) - (2*t^8.19)/(g1^4*g2^3*g3*y) - t^8.2/(g1*g2^3*g3^2*y) - t^8.2/(g1^2*g2^2*g3^2*y) - t^8.2/(g1^3*g2*g3^2*y) + (g3^4*t^8.96)/(g1^6*g2^6*y) + (g3^3*t^8.97)/(g1^4*g2^5*y) + (g3^3*t^8.97)/(g1^5*g2^4*y) + (2*g3^2*t^8.98)/(g1^3*g2^3*y) + (g3*t^8.99)/(g1*g2^2*y) + (g3*t^8.99)/(g1^2*g2*y) - (t^4.04*y)/(g1*g2) - (g3^2*t^6.09*y)/(g1^6*g2^6) - (g3*t^6.1*y)/(g1^4*g2^5) - (g3*t^6.1*y)/(g1^5*g2^4) - (2*t^6.11*y)/(g1^3*g2^3) - (t^6.12*y)/(g1*g2^2*g3) - (t^6.12*y)/(g1^2*g2*g3) + (g3^3*t^7.11*y)/(g1^8*g2^9) + (g3^3*t^7.11*y)/(g1^9*g2^8) + (3*g3^2*t^7.12*y)/(g1^7*g2^7) + (3*g3*t^7.13*y)/(g1^5*g2^6) + (3*g3*t^7.13*y)/(g1^6*g2^5) + (t^7.14*y)/(g1^3*g2^5) + (3*t^7.14*y)/(g1^4*g2^4) + (t^7.14*y)/(g1^5*g2^3) + (2*t^7.15*y)/(g1^2*g2^3*g3) + (2*t^7.15*y)/(g1^3*g2^2*g3) + (t^7.16*y)/(g1*g2*g3^2) + (g3^2*t^7.94*y)/(g1^2*g2^2) + (2*g3*t^7.95*y)/g1 + (2*g3*t^7.95*y)/g2 + 4*g1*g2*t^7.96*y + (2*g1^3*g2^2*t^7.97*y)/g3 + (2*g1^2*g2^3*t^7.97*y)/g3 + (g1^4*g2^4*t^7.98*y)/g3^2 - (g3^4*t^8.14*y)/(g1^11*g2^11) - (g3^3*t^8.15*y)/(g1^9*g2^10) - (g3^3*t^8.15*y)/(g1^10*g2^9) - (g3^2*t^8.16*y)/(g1^7*g2^9) - (3*g3^2*t^8.16*y)/(g1^8*g2^8) - (g3^2*t^8.16*y)/(g1^9*g2^7) - (3*g3*t^8.17*y)/(g1^6*g2^7) - (3*g3*t^8.17*y)/(g1^7*g2^6) - (t^8.18*y)/(g1^4*g2^6) - (5*t^8.18*y)/(g1^5*g2^5) - (t^8.18*y)/(g1^6*g2^4) - (2*t^8.19*y)/(g1^3*g2^4*g3) - (2*t^8.19*y)/(g1^4*g2^3*g3) - (t^8.2*y)/(g1*g2^3*g3^2) - (t^8.2*y)/(g1^2*g2^2*g3^2) - (t^8.2*y)/(g1^3*g2*g3^2) + (g3^4*t^8.96*y)/(g1^6*g2^6) + (g3^3*t^8.97*y)/(g1^4*g2^5) + (g3^3*t^8.97*y)/(g1^5*g2^4) + (2*g3^2*t^8.98*y)/(g1^3*g2^3) + (g3*t^8.99*y)/(g1*g2^2) + (g3*t^8.99*y)/(g1^2*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47288 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_2^2$ 0.7515 0.9955 0.7549 [X:[], M:[0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878, 0.6878], q:[0.4841, 0.828], qb:[0.828, 0.4841], phi:[0.3439]] 8*t^2.06 + t^2.9 + 36*t^4.13 + 9*t^4.97 + t^5.81 - 9*t^6. - t^4.03/y - t^4.03*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46164 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\phi_1q_1\tilde{q}_2$ 0.7103 0.916 0.7755 [X:[], M:[0.6811, 0.6946, 0.6811, 0.6946, 0.6946], q:[0.4858, 0.8331], qb:[0.8196, 0.4723], phi:[0.3473]] 2*t^2.04 + 4*t^2.08 + t^2.87 + 2*t^3.88 + 3*t^4.09 + 8*t^4.13 + 10*t^4.17 + 2*t^4.92 + 5*t^4.96 + t^5.75 + 4*t^5.92 + 6*t^5.96 - 5*t^6. - t^4.04/y - t^4.04*y detail