Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2293 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{1}M_{6}$ + ${ }M_{6}M_{7}$ + ${ }M_{8}q_{2}\tilde{q}_{2}$ | 0.7308 | 0.9552 | 0.7651 | [M:[0.6937, 0.6937, 0.6836, 0.6903, 0.687, 1.3063, 0.6937, 0.687], q:[0.8224, 0.8324], qb:[0.4839, 0.4806], phi:[0.3452]] | [M:[[1, -5], [1, -5], [-8, 4], [-2, -2], [-5, 1], [-1, 5], [1, -5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{5}$, ${ }M_{8}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{8}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{8}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.051 + 2*t^2.061 + 2*t^2.071 + 2*t^2.081 + t^2.894 + t^3.909 + t^4.102 + 2*t^4.112 + 5*t^4.122 + 6*t^4.132 + 7*t^4.142 + 4*t^4.152 + 3*t^4.162 + t^4.945 + 2*t^4.955 + 3*t^4.965 + 2*t^4.975 + t^5.787 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - 2*t^6.01 - t^6.02 + t^6.153 + 2*t^6.163 + 5*t^6.173 + 10*t^6.183 + 13*t^6.193 + 16*t^6.203 + 15*t^6.213 + 12*t^6.223 + 6*t^6.233 + 4*t^6.243 + t^6.803 + t^6.995 + 2*t^7.005 + 5*t^7.015 + 6*t^7.025 + 7*t^7.035 + 4*t^7.045 + 2*t^7.055 + t^7.818 - t^7.878 + t^8.011 + 2*t^8.021 + 4*t^8.031 + 2*t^8.041 - 2*t^8.051 - 10*t^8.061 - 11*t^8.071 - 12*t^8.081 - 6*t^8.091 - 2*t^8.101 + t^8.204 + 2*t^8.214 + 5*t^8.224 + 10*t^8.234 + 18*t^8.244 + 24*t^8.254 + 32*t^8.264 + 32*t^8.274 + 32*t^8.284 + 24*t^8.294 + 17*t^8.304 + 8*t^8.314 + 5*t^8.324 + t^8.681 + t^8.854 + 2*t^8.864 + t^8.874 - 2*t^8.884 - 5*t^8.894 - 4*t^8.904 - 2*t^8.914 - t^4.035/y - t^6.086/y - (2*t^6.096)/y - (2*t^6.106)/y - (2*t^6.116)/y + (2*t^7.112)/y + (3*t^7.122)/y + (6*t^7.132)/y + (5*t^7.142)/y + (4*t^7.152)/y + t^7.162/y + t^7.945/y + (4*t^7.955)/y + (4*t^7.965)/y + (4*t^7.975)/y + t^7.985/y - t^8.137/y - (2*t^8.147)/y - (5*t^8.157)/y - (6*t^8.167)/y - (7*t^8.177)/y - (4*t^8.187)/y - (3*t^8.197)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (2*t^8.99)/y - t^4.035*y - t^6.086*y - 2*t^6.096*y - 2*t^6.106*y - 2*t^6.116*y + 2*t^7.112*y + 3*t^7.122*y + 6*t^7.132*y + 5*t^7.142*y + 4*t^7.152*y + t^7.162*y + t^7.945*y + 4*t^7.955*y + 4*t^7.965*y + 4*t^7.975*y + t^7.985*y - t^8.137*y - 2*t^8.147*y - 5*t^8.157*y - 6*t^8.167*y - 7*t^8.177*y - 4*t^8.187*y - 3*t^8.197*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 2*t^8.99*y | (g2^4*t^2.051)/g1^8 + (2*g2*t^2.061)/g1^5 + (2*t^2.071)/(g1^2*g2^2) + (2*g1*t^2.081)/g2^5 + g1^3*g2^3*t^2.894 + (g2^8*t^3.909)/g1^4 + (g2^8*t^4.102)/g1^16 + (2*g2^5*t^4.112)/g1^13 + (5*g2^2*t^4.122)/g1^10 + (6*t^4.132)/(g1^7*g2) + (7*t^4.142)/(g1^4*g2^4) + (4*t^4.152)/(g1*g2^7) + (3*g1^2*t^4.162)/g2^10 + (g2^7*t^4.945)/g1^5 + (2*g2^4*t^4.955)/g1^2 + 3*g1*g2*t^4.965 + (2*g1^4*t^4.975)/g2^2 + g1^6*g2^6*t^5.787 + (g2^12*t^5.96)/g1^12 + (2*g2^9*t^5.97)/g1^9 + (g2^6*t^5.98)/g1^6 - 3*t^6. - (2*g1^3*t^6.01)/g2^3 - (g1^6*t^6.02)/g2^6 + (g2^12*t^6.153)/g1^24 + (2*g2^9*t^6.163)/g1^21 + (5*g2^6*t^6.173)/g1^18 + (10*g2^3*t^6.183)/g1^15 + (13*t^6.193)/g1^12 + (16*t^6.203)/(g1^9*g2^3) + (15*t^6.213)/(g1^6*g2^6) + (12*t^6.223)/(g1^3*g2^9) + (6*t^6.233)/g2^12 + (4*g1^3*t^6.243)/g2^15 + (g2^11*t^6.803)/g1 + (g2^11*t^6.995)/g1^13 + (2*g2^8*t^7.005)/g1^10 + (5*g2^5*t^7.015)/g1^7 + (6*g2^2*t^7.025)/g1^4 + (7*t^7.035)/(g1*g2) + (4*g1^2*t^7.045)/g2^4 + (2*g1^5*t^7.055)/g2^7 + (g2^16*t^7.818)/g1^8 - (g1^10*t^7.878)/g2^2 + (g2^16*t^8.011)/g1^20 + (2*g2^13*t^8.021)/g1^17 + (4*g2^10*t^8.031)/g1^14 + (2*g2^7*t^8.041)/g1^11 - (2*g2^4*t^8.051)/g1^8 - (10*g2*t^8.061)/g1^5 - (11*t^8.071)/(g1^2*g2^2) - (12*g1*t^8.081)/g2^5 - (6*g1^4*t^8.091)/g2^8 - (2*g1^7*t^8.101)/g2^11 + (g2^16*t^8.204)/g1^32 + (2*g2^13*t^8.214)/g1^29 + (5*g2^10*t^8.224)/g1^26 + (10*g2^7*t^8.234)/g1^23 + (18*g2^4*t^8.244)/g1^20 + (24*g2*t^8.254)/g1^17 + (32*t^8.264)/(g1^14*g2^2) + (32*t^8.274)/(g1^11*g2^5) + (32*t^8.284)/(g1^8*g2^8) + (24*t^8.294)/(g1^5*g2^11) + (17*t^8.304)/(g1^2*g2^14) + (8*g1*t^8.314)/g2^17 + (5*g1^4*t^8.324)/g2^20 + g1^9*g2^9*t^8.681 + (g2^15*t^8.854)/g1^9 + (2*g2^12*t^8.864)/g1^6 + (g2^9*t^8.874)/g1^3 - 2*g2^6*t^8.884 - 5*g1^3*g2^3*t^8.894 - 4*g1^6*t^8.904 - (2*g1^9*t^8.914)/g2^3 - t^4.035/(g1*g2*y) - (g2^3*t^6.086)/(g1^9*y) - (2*t^6.096)/(g1^6*y) - (2*t^6.106)/(g1^3*g2^3*y) - (2*t^6.116)/(g2^6*y) + (2*g2^5*t^7.112)/(g1^13*y) + (3*g2^2*t^7.122)/(g1^10*y) + (6*t^7.132)/(g1^7*g2*y) + (5*t^7.142)/(g1^4*g2^4*y) + (4*t^7.152)/(g1*g2^7*y) + (g1^2*t^7.162)/(g2^10*y) + (g2^7*t^7.945)/(g1^5*y) + (4*g2^4*t^7.955)/(g1^2*y) + (4*g1*g2*t^7.965)/y + (4*g1^4*t^7.975)/(g2^2*y) + (g1^7*t^7.985)/(g2^5*y) - (g2^7*t^8.137)/(g1^17*y) - (2*g2^4*t^8.147)/(g1^14*y) - (5*g2*t^8.157)/(g1^11*y) - (6*t^8.167)/(g1^8*g2^2*y) - (7*t^8.177)/(g1^5*g2^5*y) - (4*t^8.187)/(g1^2*g2^8*y) - (3*g1*t^8.197)/(g2^11*y) + (g2^12*t^8.96)/(g1^12*y) + (2*g2^9*t^8.97)/(g1^9*y) + (2*g2^6*t^8.98)/(g1^6*y) + (2*g2^3*t^8.99)/(g1^3*y) - (t^4.035*y)/(g1*g2) - (g2^3*t^6.086*y)/g1^9 - (2*t^6.096*y)/g1^6 - (2*t^6.106*y)/(g1^3*g2^3) - (2*t^6.116*y)/g2^6 + (2*g2^5*t^7.112*y)/g1^13 + (3*g2^2*t^7.122*y)/g1^10 + (6*t^7.132*y)/(g1^7*g2) + (5*t^7.142*y)/(g1^4*g2^4) + (4*t^7.152*y)/(g1*g2^7) + (g1^2*t^7.162*y)/g2^10 + (g2^7*t^7.945*y)/g1^5 + (4*g2^4*t^7.955*y)/g1^2 + 4*g1*g2*t^7.965*y + (4*g1^4*t^7.975*y)/g2^2 + (g1^7*t^7.985*y)/g2^5 - (g2^7*t^8.137*y)/g1^17 - (2*g2^4*t^8.147*y)/g1^14 - (5*g2*t^8.157*y)/g1^11 - (6*t^8.167*y)/(g1^8*g2^2) - (7*t^8.177*y)/(g1^5*g2^5) - (4*t^8.187*y)/(g1^2*g2^8) - (3*g1*t^8.197*y)/g2^11 + (g2^12*t^8.96*y)/g1^12 + (2*g2^9*t^8.97*y)/g1^9 + (2*g2^6*t^8.98*y)/g1^6 + (2*g2^3*t^8.99*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1246 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{1}M_{6}$ + ${ }M_{6}M_{7}$ | 0.7101 | 0.9146 | 0.7764 | [M:[0.6941, 0.6941, 0.6883, 0.6922, 0.6903, 1.3059, 0.6941], q:[0.8241, 0.8298], qb:[0.4818, 0.4799], phi:[0.3461]] | t^2.065 + t^2.071 + 2*t^2.077 + 2*t^2.082 + t^2.885 + t^3.912 + t^3.929 + t^4.13 + t^4.136 + 3*t^4.142 + 4*t^4.147 + 5*t^4.153 + 4*t^4.159 + 3*t^4.165 + t^4.95 + t^4.956 + 3*t^4.962 + 2*t^4.967 + t^5.77 + t^5.977 + t^5.983 + t^5.988 + t^5.994 - 2*t^6. - t^4.038/y - t^4.038*y | detail |