Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2293 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ + $ M_6M_7$ + $ M_8q_2\tilde{q}_2$ 0.7308 0.9552 0.7651 [X:[], M:[0.6937, 0.6937, 0.6836, 0.6903, 0.687, 1.3063, 0.6937, 0.687], q:[0.8224, 0.8324], qb:[0.4839, 0.4806], phi:[0.3452]] [X:[], M:[[1, -5], [1, -5], [-8, 4], [-2, -2], [-5, 1], [-1, 5], [1, -5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_5$, $ M_8$, $ M_4$, $ \phi_1^2$, $ M_1$, $ M_7$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_3M_8$, $ M_3M_4$, $ M_5^2$, $ M_5M_8$, $ M_8^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_4M_5$, $ M_3M_7$, $ M_4M_8$, $ M_5\phi_1^2$, $ M_8\phi_1^2$, $ M_4^2$, $ M_1M_5$, $ M_5M_7$, $ M_1M_8$, $ M_7M_8$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4M_7$, $ M_1\phi_1^2$, $ M_7\phi_1^2$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_8\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_8q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$ . -3 t^2.05 + 2*t^2.06 + 2*t^2.07 + 2*t^2.08 + t^2.89 + t^3.91 + t^4.1 + 2*t^4.11 + 5*t^4.12 + 6*t^4.13 + 7*t^4.14 + 4*t^4.15 + 3*t^4.16 + t^4.94 + 2*t^4.95 + 3*t^4.96 + 2*t^4.97 + t^5.79 + t^5.96 + 2*t^5.97 + t^5.98 - 3*t^6. - 2*t^6.01 - t^6.02 + t^6.15 + 2*t^6.16 + 5*t^6.17 + 10*t^6.18 + 13*t^6.19 + 16*t^6.2 + 15*t^6.21 + 12*t^6.22 + 6*t^6.23 + 4*t^6.24 + t^6.8 + t^7. + 2*t^7.01 + 5*t^7.02 + 6*t^7.03 + 7*t^7.04 + 4*t^7.05 + 2*t^7.06 + t^7.82 - t^7.88 + t^8.01 + 2*t^8.02 + 4*t^8.03 + 2*t^8.04 - 2*t^8.05 - 10*t^8.06 - 11*t^8.07 - 12*t^8.08 - 6*t^8.09 - 2*t^8.1 + t^8.2 + 2*t^8.21 + 5*t^8.22 + 10*t^8.23 + 18*t^8.24 + 24*t^8.25 + 32*t^8.26 + 32*t^8.27 + 32*t^8.28 + 24*t^8.29 + 17*t^8.3 + 8*t^8.31 + 5*t^8.32 + t^8.68 + t^8.85 + 2*t^8.86 + t^8.87 - 2*t^8.88 - 5*t^8.89 - 4*t^8.9 - 2*t^8.91 - t^4.04/y - t^6.09/y - (2*t^6.1)/y - (2*t^6.11)/y - (2*t^6.12)/y + (2*t^7.11)/y + (3*t^7.12)/y + (6*t^7.13)/y + (5*t^7.14)/y + (4*t^7.15)/y + t^7.16/y + t^7.94/y + (4*t^7.95)/y + (4*t^7.96)/y + (4*t^7.97)/y + t^7.98/y - t^8.14/y - (2*t^8.15)/y - (5*t^8.16)/y - (6*t^8.17)/y - (7*t^8.18)/y - (4*t^8.19)/y - (3*t^8.2)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (2*t^8.99)/y - t^4.04*y - t^6.09*y - 2*t^6.1*y - 2*t^6.11*y - 2*t^6.12*y + 2*t^7.11*y + 3*t^7.12*y + 6*t^7.13*y + 5*t^7.14*y + 4*t^7.15*y + t^7.16*y + t^7.94*y + 4*t^7.95*y + 4*t^7.96*y + 4*t^7.97*y + t^7.98*y - t^8.14*y - 2*t^8.15*y - 5*t^8.16*y - 6*t^8.17*y - 7*t^8.18*y - 4*t^8.19*y - 3*t^8.2*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 2*t^8.99*y (g2^4*t^2.05)/g1^8 + (2*g2*t^2.06)/g1^5 + (2*t^2.07)/(g1^2*g2^2) + (2*g1*t^2.08)/g2^5 + g1^3*g2^3*t^2.89 + (g2^8*t^3.91)/g1^4 + (g2^8*t^4.1)/g1^16 + (2*g2^5*t^4.11)/g1^13 + (5*g2^2*t^4.12)/g1^10 + (6*t^4.13)/(g1^7*g2) + (7*t^4.14)/(g1^4*g2^4) + (4*t^4.15)/(g1*g2^7) + (3*g1^2*t^4.16)/g2^10 + (g2^7*t^4.94)/g1^5 + (2*g2^4*t^4.95)/g1^2 + 3*g1*g2*t^4.96 + (2*g1^4*t^4.97)/g2^2 + g1^6*g2^6*t^5.79 + (g2^12*t^5.96)/g1^12 + (2*g2^9*t^5.97)/g1^9 + (g2^6*t^5.98)/g1^6 - 3*t^6. - (2*g1^3*t^6.01)/g2^3 - (g1^6*t^6.02)/g2^6 + (g2^12*t^6.15)/g1^24 + (2*g2^9*t^6.16)/g1^21 + (5*g2^6*t^6.17)/g1^18 + (10*g2^3*t^6.18)/g1^15 + (13*t^6.19)/g1^12 + (16*t^6.2)/(g1^9*g2^3) + (15*t^6.21)/(g1^6*g2^6) + (12*t^6.22)/(g1^3*g2^9) + (6*t^6.23)/g2^12 + (4*g1^3*t^6.24)/g2^15 + (g2^11*t^6.8)/g1 + (g2^11*t^7.)/g1^13 + (2*g2^8*t^7.01)/g1^10 + (5*g2^5*t^7.02)/g1^7 + (6*g2^2*t^7.03)/g1^4 + (7*t^7.04)/(g1*g2) + (4*g1^2*t^7.05)/g2^4 + (2*g1^5*t^7.06)/g2^7 + (g2^16*t^7.82)/g1^8 - (g1^10*t^7.88)/g2^2 + (g2^16*t^8.01)/g1^20 + (2*g2^13*t^8.02)/g1^17 + (4*g2^10*t^8.03)/g1^14 + (2*g2^7*t^8.04)/g1^11 - (2*g2^4*t^8.05)/g1^8 - (10*g2*t^8.06)/g1^5 - (11*t^8.07)/(g1^2*g2^2) - (12*g1*t^8.08)/g2^5 - (6*g1^4*t^8.09)/g2^8 - (2*g1^7*t^8.1)/g2^11 + (g2^16*t^8.2)/g1^32 + (2*g2^13*t^8.21)/g1^29 + (5*g2^10*t^8.22)/g1^26 + (10*g2^7*t^8.23)/g1^23 + (18*g2^4*t^8.24)/g1^20 + (24*g2*t^8.25)/g1^17 + (32*t^8.26)/(g1^14*g2^2) + (32*t^8.27)/(g1^11*g2^5) + (32*t^8.28)/(g1^8*g2^8) + (24*t^8.29)/(g1^5*g2^11) + (17*t^8.3)/(g1^2*g2^14) + (8*g1*t^8.31)/g2^17 + (5*g1^4*t^8.32)/g2^20 + g1^9*g2^9*t^8.68 + (g2^15*t^8.85)/g1^9 + (2*g2^12*t^8.86)/g1^6 + (g2^9*t^8.87)/g1^3 - 2*g2^6*t^8.88 - 5*g1^3*g2^3*t^8.89 - 4*g1^6*t^8.9 - (2*g1^9*t^8.91)/g2^3 - t^4.04/(g1*g2*y) - (g2^3*t^6.09)/(g1^9*y) - (2*t^6.1)/(g1^6*y) - (2*t^6.11)/(g1^3*g2^3*y) - (2*t^6.12)/(g2^6*y) + (2*g2^5*t^7.11)/(g1^13*y) + (3*g2^2*t^7.12)/(g1^10*y) + (6*t^7.13)/(g1^7*g2*y) + (5*t^7.14)/(g1^4*g2^4*y) + (4*t^7.15)/(g1*g2^7*y) + (g1^2*t^7.16)/(g2^10*y) + (g2^7*t^7.94)/(g1^5*y) + (4*g2^4*t^7.95)/(g1^2*y) + (4*g1*g2*t^7.96)/y + (4*g1^4*t^7.97)/(g2^2*y) + (g1^7*t^7.98)/(g2^5*y) - (g2^7*t^8.14)/(g1^17*y) - (2*g2^4*t^8.15)/(g1^14*y) - (5*g2*t^8.16)/(g1^11*y) - (6*t^8.17)/(g1^8*g2^2*y) - (7*t^8.18)/(g1^5*g2^5*y) - (4*t^8.19)/(g1^2*g2^8*y) - (3*g1*t^8.2)/(g2^11*y) + (g2^12*t^8.96)/(g1^12*y) + (2*g2^9*t^8.97)/(g1^9*y) + (2*g2^6*t^8.98)/(g1^6*y) + (2*g2^3*t^8.99)/(g1^3*y) - (t^4.04*y)/(g1*g2) - (g2^3*t^6.09*y)/g1^9 - (2*t^6.1*y)/g1^6 - (2*t^6.11*y)/(g1^3*g2^3) - (2*t^6.12*y)/g2^6 + (2*g2^5*t^7.11*y)/g1^13 + (3*g2^2*t^7.12*y)/g1^10 + (6*t^7.13*y)/(g1^7*g2) + (5*t^7.14*y)/(g1^4*g2^4) + (4*t^7.15*y)/(g1*g2^7) + (g1^2*t^7.16*y)/g2^10 + (g2^7*t^7.94*y)/g1^5 + (4*g2^4*t^7.95*y)/g1^2 + 4*g1*g2*t^7.96*y + (4*g1^4*t^7.97*y)/g2^2 + (g1^7*t^7.98*y)/g2^5 - (g2^7*t^8.14*y)/g1^17 - (2*g2^4*t^8.15*y)/g1^14 - (5*g2*t^8.16*y)/g1^11 - (6*t^8.17*y)/(g1^8*g2^2) - (7*t^8.18*y)/(g1^5*g2^5) - (4*t^8.19*y)/(g1^2*g2^8) - (3*g1*t^8.2*y)/g2^11 + (g2^12*t^8.96*y)/g1^12 + (2*g2^9*t^8.97*y)/g1^9 + (2*g2^6*t^8.98*y)/g1^6 + (2*g2^3*t^8.99*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1246 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ + $ M_6M_7$ 0.7101 0.9146 0.7764 [X:[], M:[0.6941, 0.6941, 0.6883, 0.6922, 0.6903, 1.3059, 0.6941], q:[0.8241, 0.8298], qb:[0.4818, 0.4799], phi:[0.3461]] 2*t^2.07 + 4*t^2.08 + t^2.89 + t^3.91 + t^3.93 + t^4.13 + 4*t^4.14 + 9*t^4.15 + 7*t^4.16 + t^4.95 + 4*t^4.96 + 2*t^4.97 + t^5.77 + 2*t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y detail