Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2728 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_2$ | 0.7308 | 0.9549 | 0.7653 | [X:[], M:[0.6897, 0.6897, 0.6897, 0.6897, 0.6897, 0.6897], q:[0.8276, 0.8276], qb:[0.4827, 0.4827], phi:[0.3449]] | [X:[], M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [1, -1, -4], [-1, 0, -3]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_5$, $ M_6$, $ \phi_1^2$, $ M_1$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_4$, $ M_3^2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_2M_6$, $ M_5M_6$, $ M_2\phi_1^2$, $ M_6^2$, $ M_1M_2$, $ M_5\phi_1^2$, $ M_1M_5$, $ M_2M_3$, $ M_6\phi_1^2$, $ M_2M_4$, $ M_3M_5$, $ M_1M_6$, $ \phi_1^4$, $ M_4M_5$, $ M_1\phi_1^2$, $ M_3M_6$, $ M_1^2$, $ M_4M_6$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_4\phi_1^2$, $ M_3M_4$, $ M_4^2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ | $M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ | -2 | 7*t^2.07 + t^2.9 + t^3.93 + 28*t^4.14 + 8*t^4.97 + t^5.79 - 2*t^6. + 84*t^6.21 + t^6.83 + 27*t^7.03 - 34*t^8.07 + 210*t^8.28 + t^8.69 - 9*t^8.9 - t^4.03/y - (7*t^6.1)/y + (21*t^7.14)/y + (14*t^7.97)/y - (28*t^8.17)/y - t^4.03*y - 7*t^6.1*y + 21*t^7.14*y + 14*t^7.97*y - 28*t^8.17*y | t^2.07/(g1*g2^3) + (g2*t^2.07)/g3^5 + (g1*t^2.07)/(g2*g3^4) + t^2.07/(g1*g3^3) + t^2.07/(g2^2*g3^2) + (g1*t^2.07)/(g2^4*g3) + (g3*t^2.07)/g2^5 + g2^3*g3^3*t^2.9 + g2^2*g3^2*t^3.93 + (g1*t^4.14)/g2^9 + t^4.14/(g1^2*g2^6) + (g2^2*t^4.14)/g3^10 + (g1*t^4.14)/g3^9 + (g1^2*t^4.14)/(g2^2*g3^8) + (g2*t^4.14)/(g1*g3^8) + (2*t^4.14)/(g2*g3^7) + t^4.14/(g1^2*g3^6) + (2*g1*t^4.14)/(g2^3*g3^6) + (g1^2*t^4.14)/(g2^5*g3^5) + (2*t^4.14)/(g1*g2^2*g3^5) + (4*t^4.14)/(g2^4*g3^4) + (2*g1*t^4.14)/(g2^6*g3^3) + t^4.14/(g1^2*g2^3*g3^3) + (g1^2*t^4.14)/(g2^8*g3^2) + (2*t^4.14)/(g1*g2^5*g3^2) + (2*t^4.14)/(g2^7*g3) + (g3*t^4.14)/(g1*g2^8) + (g3^2*t^4.14)/g2^10 + (g2^3*t^4.97)/g1 + (g2^4*t^4.97)/g3^2 + (g1*g2^2*t^4.97)/g3 + 2*g2*g3*t^4.97 + (g1*g3^2*t^4.97)/g2 + (g3^3*t^4.97)/g1 + (g3^4*t^4.97)/g2^2 + g2^6*g3^6*t^5.79 - 2*t^6. + (2*t^6.21)/g2^12 + t^6.21/(g1^3*g2^9) + (g2^3*t^6.21)/g3^15 + (g1*g2*t^6.21)/g3^14 + (g1^2*t^6.21)/(g2*g3^13) + (g2^2*t^6.21)/(g1*g3^13) + (2*t^6.21)/g3^12 + (g1^3*t^6.21)/(g2^3*g3^12) + (3*g1*t^6.21)/(g2^2*g3^11) + (g2*t^6.21)/(g1^2*g3^11) + (2*g1^2*t^6.21)/(g2^4*g3^10) + (3*t^6.21)/(g1*g2*g3^10) + t^6.21/(g1^3*g3^9) + (g1^3*t^6.21)/(g2^6*g3^9) + (5*t^6.21)/(g2^3*g3^9) + (5*g1*t^6.21)/(g2^5*g3^8) + (2*t^6.21)/(g1^2*g2^2*g3^8) + (3*g1^2*t^6.21)/(g2^7*g3^7) + (5*t^6.21)/(g1*g2^4*g3^7) + (g1^3*t^6.21)/(g2^9*g3^6) + (6*t^6.21)/(g2^6*g3^6) + t^6.21/(g1^3*g2^3*g3^6) + (5*g1*t^6.21)/(g2^8*g3^5) + (3*t^6.21)/(g1^2*g2^5*g3^5) + (2*g1^2*t^6.21)/(g2^10*g3^4) + (5*t^6.21)/(g1*g2^7*g3^4) + (g1^3*t^6.21)/(g2^12*g3^3) + (5*t^6.21)/(g2^9*g3^3) + t^6.21/(g1^3*g2^6*g3^3) + (3*g1*t^6.21)/(g2^11*g3^2) + (2*t^6.21)/(g1^2*g2^8*g3^2) + (g1^2*t^6.21)/(g2^13*g3) + (3*t^6.21)/(g1*g2^10*g3) + (g1*g3*t^6.21)/g2^14 + (g3*t^6.21)/(g1^2*g2^11) + (g3^2*t^6.21)/(g1*g2^13) + (g3^3*t^6.21)/g2^15 + g2^5*g3^5*t^6.83 + t^7.03/g1^2 + (2*g1*t^7.03)/g2^3 + (g2^5*t^7.03)/g3^7 + (g1*g2^3*t^7.03)/g3^6 + (g1^2*g2*t^7.03)/g3^5 + (g2^4*t^7.03)/(g1*g3^5) + (2*g2^2*t^7.03)/g3^4 + (2*g1*t^7.03)/g3^3 + (g2^3*t^7.03)/(g1^2*g3^3) + (g1^2*t^7.03)/(g2^2*g3^2) + (2*g2*t^7.03)/(g1*g3^2) + (3*t^7.03)/(g2*g3) + (g1^2*g3*t^7.03)/g2^5 + (2*g3*t^7.03)/(g1*g2^2) + (2*g3^2*t^7.03)/g2^4 + (g1*g3^3*t^7.03)/g2^6 + (g3^3*t^7.03)/(g1^2*g2^3) + (g3^4*t^7.03)/(g1*g2^5) + (g3^5*t^7.03)/g2^7 - (4*t^8.07)/(g1*g2^3) - (g1*g2^2*t^8.07)/g3^7 - (g2^3*t^8.07)/(g1*g3^6) - (4*g2*t^8.07)/g3^5 - (4*g1*t^8.07)/(g2*g3^4) - (4*t^8.07)/(g1*g3^3) - (g1^2*t^8.07)/(g2^3*g3^3) - (4*t^8.07)/(g2^2*g3^2) - (4*g1*t^8.07)/(g2^4*g3) - t^8.07/(g1^2*g2*g3) - (4*g3*t^8.07)/g2^5 - (g1*g3^2*t^8.07)/g2^7 - (g3^3*t^8.07)/(g1*g2^6) + (g1^2*t^8.28)/g2^18 + (3*t^8.28)/(g1*g2^15) + t^8.28/(g1^4*g2^12) + (g2^4*t^8.28)/g3^20 + (g1*g2^2*t^8.28)/g3^19 + (g1^2*t^8.28)/g3^18 + (g2^3*t^8.28)/(g1*g3^18) + (g1^3*t^8.28)/(g2^2*g3^17) + (2*g2*t^8.28)/g3^17 + (g1^4*t^8.28)/(g2^4*g3^16) + (3*g1*t^8.28)/(g2*g3^16) + (g2^2*t^8.28)/(g1^2*g3^16) + (3*t^8.28)/(g1*g3^15) + (3*g1^2*t^8.28)/(g2^3*g3^15) + (2*g1^3*t^8.28)/(g2^5*g3^14) + (6*t^8.28)/(g2^2*g3^14) + (g2*t^8.28)/(g1^3*g3^14) + (g1^4*t^8.28)/(g2^7*g3^13) + (6*g1*t^8.28)/(g2^4*g3^13) + (3*t^8.28)/(g1^2*g2*g3^13) + t^8.28/(g1^4*g3^12) + (6*g1^2*t^8.28)/(g2^6*g3^12) + (6*t^8.28)/(g1*g2^3*g3^12) + (3*g1^3*t^8.28)/(g2^8*g3^11) + (9*t^8.28)/(g2^5*g3^11) + (2*t^8.28)/(g1^3*g2^2*g3^11) + (g1^4*t^8.28)/(g2^10*g3^10) + (9*g1*t^8.28)/(g2^7*g3^10) + (6*t^8.28)/(g1^2*g2^4*g3^10) + (6*g1^2*t^8.28)/(g2^9*g3^9) + (9*t^8.28)/(g1*g2^6*g3^9) + t^8.28/(g1^4*g2^3*g3^9) + (3*g1^3*t^8.28)/(g2^11*g3^8) + (12*t^8.28)/(g2^8*g3^8) + (3*t^8.28)/(g1^3*g2^5*g3^8) + (g1^4*t^8.28)/(g2^13*g3^7) + (9*g1*t^8.28)/(g2^10*g3^7) + (6*t^8.28)/(g1^2*g2^7*g3^7) + (6*g1^2*t^8.28)/(g2^12*g3^6) + (9*t^8.28)/(g1*g2^9*g3^6) + t^8.28/(g1^4*g2^6*g3^6) + (2*g1^3*t^8.28)/(g2^14*g3^5) + (9*t^8.28)/(g2^11*g3^5) + (3*t^8.28)/(g1^3*g2^8*g3^5) + (g1^4*t^8.28)/(g2^16*g3^4) + (6*g1*t^8.28)/(g2^13*g3^4) + (6*t^8.28)/(g1^2*g2^10*g3^4) + (3*g1^2*t^8.28)/(g2^15*g3^3) + (6*t^8.28)/(g1*g2^12*g3^3) + t^8.28/(g1^4*g2^9*g3^3) + (g1^3*t^8.28)/(g2^17*g3^2) + (6*t^8.28)/(g2^14*g3^2) + (2*t^8.28)/(g1^3*g2^11*g3^2) + (3*g1*t^8.28)/(g2^16*g3) + (3*t^8.28)/(g1^2*g2^13*g3) + (2*g3*t^8.28)/g2^17 + (g3*t^8.28)/(g1^3*g2^14) + (g1*g3^2*t^8.28)/g2^19 + (g3^2*t^8.28)/(g1^2*g2^16) + (g3^3*t^8.28)/(g1*g2^18) + (g3^4*t^8.28)/g2^20 + g2^9*g3^9*t^8.69 - g2^6*t^8.9 - g1*g2^4*g3*t^8.9 - (g2^5*g3^2*t^8.9)/g1 - 3*g2^3*g3^3*t^8.9 - g1*g2*g3^4*t^8.9 - (g2^2*g3^5*t^8.9)/g1 - g3^6*t^8.9 - t^4.03/(g2*g3*y) - t^6.1/(g2^6*y) - t^6.1/(g3^6*y) - (g1*t^6.1)/(g2^2*g3^5*y) - t^6.1/(g1*g2*g3^4*y) - t^6.1/(g2^3*g3^3*y) - (g1*t^6.1)/(g2^5*g3^2*y) - t^6.1/(g1*g2^4*g3*y) + (g1*t^7.14)/(g2^9*y) + (g1*t^7.14)/(g3^9*y) + (g2*t^7.14)/(g1*g3^8*y) + (2*t^7.14)/(g2*g3^7*y) + (2*g1*t^7.14)/(g2^3*g3^6*y) + (g1^2*t^7.14)/(g2^5*g3^5*y) + (2*t^7.14)/(g1*g2^2*g3^5*y) + (3*t^7.14)/(g2^4*g3^4*y) + (2*g1*t^7.14)/(g2^6*g3^3*y) + t^7.14/(g1^2*g2^3*g3^3*y) + (2*t^7.14)/(g1*g2^5*g3^2*y) + (2*t^7.14)/(g2^7*g3*y) + (g3*t^7.14)/(g1*g2^8*y) + (2*g2^3*t^7.97)/(g1*y) + (2*g2^4*t^7.97)/(g3^2*y) + (2*g1*g2^2*t^7.97)/(g3*y) + (2*g2*g3*t^7.97)/y + (2*g1*g3^2*t^7.97)/(g2*y) + (2*g3^3*t^7.97)/(g1*y) + (2*g3^4*t^7.97)/(g2^2*y) - t^8.17/(g1*g2^9*y) - (g2*t^8.17)/(g3^11*y) - (g1*t^8.17)/(g2*g3^10*y) - t^8.17/(g1*g3^9*y) - (g1^2*t^8.17)/(g2^3*g3^9*y) - (2*t^8.17)/(g2^2*g3^8*y) - (2*g1*t^8.17)/(g2^4*g3^7*y) - t^8.17/(g1^2*g2*g3^7*y) - (g1^2*t^8.17)/(g2^6*g3^6*y) - (2*t^8.17)/(g1*g2^3*g3^6*y) - (4*t^8.17)/(g2^5*g3^5*y) - (2*g1*t^8.17)/(g2^7*g3^4*y) - t^8.17/(g1^2*g2^4*g3^4*y) - (g1^2*t^8.17)/(g2^9*g3^3*y) - (2*t^8.17)/(g1*g2^6*g3^3*y) - (2*t^8.17)/(g2^8*g3^2*y) - (g1*t^8.17)/(g2^10*g3*y) - t^8.17/(g1^2*g2^7*g3*y) - (g3*t^8.17)/(g2^11*y) - (t^4.03*y)/(g2*g3) - (t^6.1*y)/g2^6 - (t^6.1*y)/g3^6 - (g1*t^6.1*y)/(g2^2*g3^5) - (t^6.1*y)/(g1*g2*g3^4) - (t^6.1*y)/(g2^3*g3^3) - (g1*t^6.1*y)/(g2^5*g3^2) - (t^6.1*y)/(g1*g2^4*g3) + (g1*t^7.14*y)/g2^9 + (g1*t^7.14*y)/g3^9 + (g2*t^7.14*y)/(g1*g3^8) + (2*t^7.14*y)/(g2*g3^7) + (2*g1*t^7.14*y)/(g2^3*g3^6) + (g1^2*t^7.14*y)/(g2^5*g3^5) + (2*t^7.14*y)/(g1*g2^2*g3^5) + (3*t^7.14*y)/(g2^4*g3^4) + (2*g1*t^7.14*y)/(g2^6*g3^3) + (t^7.14*y)/(g1^2*g2^3*g3^3) + (2*t^7.14*y)/(g1*g2^5*g3^2) + (2*t^7.14*y)/(g2^7*g3) + (g3*t^7.14*y)/(g1*g2^8) + (2*g2^3*t^7.97*y)/g1 + (2*g2^4*t^7.97*y)/g3^2 + (2*g1*g2^2*t^7.97*y)/g3 + 2*g2*g3*t^7.97*y + (2*g1*g3^2*t^7.97*y)/g2 + (2*g3^3*t^7.97*y)/g1 + (2*g3^4*t^7.97*y)/g2^2 - (t^8.17*y)/(g1*g2^9) - (g2*t^8.17*y)/g3^11 - (g1*t^8.17*y)/(g2*g3^10) - (t^8.17*y)/(g1*g3^9) - (g1^2*t^8.17*y)/(g2^3*g3^9) - (2*t^8.17*y)/(g2^2*g3^8) - (2*g1*t^8.17*y)/(g2^4*g3^7) - (t^8.17*y)/(g1^2*g2*g3^7) - (g1^2*t^8.17*y)/(g2^6*g3^6) - (2*t^8.17*y)/(g1*g2^3*g3^6) - (4*t^8.17*y)/(g2^5*g3^5) - (2*g1*t^8.17*y)/(g2^7*g3^4) - (t^8.17*y)/(g1^2*g2^4*g3^4) - (g1^2*t^8.17*y)/(g2^9*g3^3) - (2*t^8.17*y)/(g1*g2^6*g3^3) - (2*t^8.17*y)/(g2^8*g3^2) - (g1*t^8.17*y)/(g2^10*g3) - (t^8.17*y)/(g1^2*g2^7*g3) - (g3*t^8.17*y)/g2^11 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1726 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ | 0.7102 | 0.9149 | 0.7762 | [X:[], M:[0.6854, 0.6964, 0.6964, 0.6891, 0.6891], q:[0.8323, 0.8213], qb:[0.4823, 0.4786], phi:[0.3464]] | t^2.06 + 2*t^2.07 + t^2.08 + 2*t^2.09 + t^2.88 + t^3.9 + t^3.92 + t^4.11 + 2*t^4.12 + 4*t^4.13 + 4*t^4.15 + 5*t^4.16 + 2*t^4.17 + 3*t^4.18 + t^4.94 + 2*t^4.95 + 2*t^4.96 + 2*t^4.97 + t^5.77 + t^5.96 + 2*t^5.97 + t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y | detail |