Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1712 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4q_1\tilde{q}_2$ 0.6897 0.8762 0.7872 [X:[], M:[0.6829, 0.6979, 0.6979, 0.6829], q:[0.8406, 0.8104], qb:[0.4765, 0.4765], phi:[0.349]] [X:[], M:[[1, -4, -1], [0, 1, -5], [0, -5, 1], [1, -1, -4]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_1$, $ M_2$, $ \phi_1^2$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_1M_4$, $ M_1^2$, $ M_1M_3$, $ M_2M_4$, $ M_1M_2$, $ M_4\phi_1^2$, $ M_3M_4$, $ M_1\phi_1^2$, $ M_2^2$, $ M_2\phi_1^2$, $ M_2M_3$, $ \phi_1^4$, $ M_3\phi_1^2$, $ M_3^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$ $M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ -2 2*t^2.05 + 3*t^2.09 + t^2.86 + 2*t^3.86 + t^3.91 + 3*t^4.1 + 6*t^4.14 + 6*t^4.19 + 2*t^4.91 + 4*t^4.95 + t^5.72 + 4*t^5.91 + 6*t^5.95 - 2*t^6. - 2*t^6.05 + 4*t^6.15 + 9*t^6.19 + 12*t^6.24 + 10*t^6.28 + 2*t^6.72 + t^6.77 + 3*t^6.96 + 6*t^7. + 5*t^7.05 - 2*t^7.09 + 3*t^7.72 + 2*t^7.77 - 2*t^7.86 + 6*t^7.96 + 11*t^8. + 2*t^8.05 - 12*t^8.09 - 6*t^8.14 + 5*t^8.19 + 12*t^8.24 + 18*t^8.28 + 20*t^8.33 + 15*t^8.38 + t^8.58 + 4*t^8.77 + 6*t^8.81 - 5*t^8.86 - 4*t^8.9 - t^4.05/y - (2*t^6.1)/y - (3*t^6.14)/y + t^7.1/y + (6*t^7.14)/y + (3*t^7.19)/y + (2*t^7.91)/y + (6*t^7.95)/y + (2*t^8.)/y - (3*t^8.14)/y - (6*t^8.19)/y - (6*t^8.23)/y + (4*t^8.91)/y + (8*t^8.95)/y - t^4.05*y - 2*t^6.1*y - 3*t^6.14*y + t^7.1*y + 6*t^7.14*y + 3*t^7.19*y + 2*t^7.91*y + 6*t^7.95*y + 2*t^8.*y - 3*t^8.14*y - 6*t^8.19*y - 6*t^8.23*y + 4*t^8.91*y + 8*t^8.95*y (g1*t^2.05)/(g2*g3^4) + (g1*t^2.05)/(g2^4*g3) + (g2*t^2.09)/g3^5 + t^2.09/(g2^2*g3^2) + (g3*t^2.09)/g2^5 + g2^3*g3^3*t^2.86 + g1*g2^3*t^3.86 + g1*g3^3*t^3.86 + g2^2*g3^2*t^3.91 + (g1^2*t^4.1)/(g2^2*g3^8) + (g1^2*t^4.1)/(g2^5*g3^5) + (g1^2*t^4.1)/(g2^8*g3^2) + (g1*t^4.14)/g2^9 + (g1*t^4.14)/g3^9 + (2*g1*t^4.14)/(g2^3*g3^6) + (2*g1*t^4.14)/(g2^6*g3^3) + (g2^2*t^4.19)/g3^10 + t^4.19/(g2*g3^7) + (2*t^4.19)/(g2^4*g3^4) + t^4.19/(g2^7*g3) + (g3^2*t^4.19)/g2^10 + (g1*g2^2*t^4.91)/g3 + (g1*g3^2*t^4.91)/g2 + (g2^4*t^4.95)/g3^2 + 2*g2*g3*t^4.95 + (g3^4*t^4.95)/g2^2 + g2^6*g3^6*t^5.72 + (g1^2*g2^2*t^5.91)/g3^4 + (2*g1^2*t^5.91)/(g2*g3) + (g1^2*g3^2*t^5.91)/g2^4 + (g1*g2^4*t^5.95)/g3^5 + (2*g1*g2*t^5.95)/g3^2 + (2*g1*g3*t^5.95)/g2^2 + (g1*g3^4*t^5.95)/g2^5 - 2*t^6. - (g2^2*t^6.05)/(g1*g3) - (g3^2*t^6.05)/(g1*g2) + (g1^3*t^6.15)/(g2^3*g3^12) + (g1^3*t^6.15)/(g2^6*g3^9) + (g1^3*t^6.15)/(g2^9*g3^6) + (g1^3*t^6.15)/(g2^12*g3^3) + (g1^2*t^6.19)/(g2*g3^13) + (2*g1^2*t^6.19)/(g2^4*g3^10) + (3*g1^2*t^6.19)/(g2^7*g3^7) + (2*g1^2*t^6.19)/(g2^10*g3^4) + (g1^2*t^6.19)/(g2^13*g3) + (g1*g2*t^6.24)/g3^14 + (2*g1*t^6.24)/(g2^2*g3^11) + (3*g1*t^6.24)/(g2^5*g3^8) + (3*g1*t^6.24)/(g2^8*g3^5) + (2*g1*t^6.24)/(g2^11*g3^2) + (g1*g3*t^6.24)/g2^14 + t^6.28/g2^12 + (g2^3*t^6.28)/g3^15 + t^6.28/g3^12 + (2*t^6.28)/(g2^3*g3^9) + (2*t^6.28)/(g2^6*g3^6) + (2*t^6.28)/(g2^9*g3^3) + (g3^3*t^6.28)/g2^15 + g1*g2^6*g3^3*t^6.72 + g1*g2^3*g3^6*t^6.72 + g2^5*g3^5*t^6.77 + (g1^2*g2*t^6.96)/g3^5 + (g1^2*t^6.96)/(g2^2*g3^2) + (g1^2*g3*t^6.96)/g2^5 + (2*g1*t^7.)/g2^3 + (g1*g2^3*t^7.)/g3^6 + (2*g1*t^7.)/g3^3 + (g1*g3^3*t^7.)/g2^6 + (g2^5*t^7.05)/g3^7 + (g2^2*t^7.05)/g3^4 + t^7.05/(g2*g3) + (g3^2*t^7.05)/g2^4 + (g3^5*t^7.05)/g2^7 - (g2*t^7.09)/(g1*g3^2) - (g3*t^7.09)/(g1*g2^2) + g1^2*g2^6*t^7.72 + g1^2*g2^3*g3^3*t^7.72 + g1^2*g3^6*t^7.72 + g1*g2^5*g3^2*t^7.77 + g1*g2^2*g3^5*t^7.77 - (g2^6*g3^3*t^7.86)/g1 - (g2^3*g3^6*t^7.86)/g1 + (g1^3*g2*t^7.96)/g3^8 + (2*g1^3*t^7.96)/(g2^2*g3^5) + (2*g1^3*t^7.96)/(g2^5*g3^2) + (g1^3*g3*t^7.96)/g2^8 + (3*g1^2*t^8.)/g2^6 + (g1^2*g2^3*t^8.)/g3^9 + (3*g1^2*t^8.)/g3^6 + (3*g1^2*t^8.)/(g2^3*g3^3) + (g1^2*g3^3*t^8.)/g2^9 + (g1*g2^5*t^8.05)/g3^10 + (g1*g2^2*t^8.05)/g3^7 - (g1*t^8.05)/(g2*g3^4) - (g1*t^8.05)/(g2^4*g3) + (g1*g3^2*t^8.05)/g2^7 + (g1*g3^5*t^8.05)/g2^10 - (4*g2*t^8.09)/g3^5 - (4*t^8.09)/(g2^2*g3^2) - (4*g3*t^8.09)/g2^5 - (2*t^8.14)/(g1*g2^3) - (g2^3*t^8.14)/(g1*g3^6) - (2*t^8.14)/(g1*g3^3) - (g3^3*t^8.14)/(g1*g2^6) + (g1^4*t^8.19)/(g2^4*g3^16) + (g1^4*t^8.19)/(g2^7*g3^13) + (g1^4*t^8.19)/(g2^10*g3^10) + (g1^4*t^8.19)/(g2^13*g3^7) + (g1^4*t^8.19)/(g2^16*g3^4) + (g1^3*t^8.24)/(g2^2*g3^17) + (2*g1^3*t^8.24)/(g2^5*g3^14) + (3*g1^3*t^8.24)/(g2^8*g3^11) + (3*g1^3*t^8.24)/(g2^11*g3^8) + (2*g1^3*t^8.24)/(g2^14*g3^5) + (g1^3*t^8.24)/(g2^17*g3^2) + (g1^2*t^8.28)/g2^18 + (g1^2*t^8.28)/g3^18 + (2*g1^2*t^8.28)/(g2^3*g3^15) + (4*g1^2*t^8.28)/(g2^6*g3^12) + (4*g1^2*t^8.28)/(g2^9*g3^9) + (4*g1^2*t^8.28)/(g2^12*g3^6) + (2*g1^2*t^8.28)/(g2^15*g3^3) + (g1*g2^2*t^8.33)/g3^19 + (2*g1*t^8.33)/(g2*g3^16) + (3*g1*t^8.33)/(g2^4*g3^13) + (4*g1*t^8.33)/(g2^7*g3^10) + (4*g1*t^8.33)/(g2^10*g3^7) + (3*g1*t^8.33)/(g2^13*g3^4) + (2*g1*t^8.33)/(g2^16*g3) + (g1*g3^2*t^8.33)/g2^19 + (g2^4*t^8.38)/g3^20 + (g2*t^8.38)/g3^17 + (2*t^8.38)/(g2^2*g3^14) + (2*t^8.38)/(g2^5*g3^11) + (3*t^8.38)/(g2^8*g3^8) + (2*t^8.38)/(g2^11*g3^5) + (2*t^8.38)/(g2^14*g3^2) + (g3*t^8.38)/g2^17 + (g3^4*t^8.38)/g2^20 + g2^9*g3^9*t^8.58 + (g1^2*g2^5*t^8.77)/g3 + 2*g1^2*g2^2*g3^2*t^8.77 + (g1^2*g3^5*t^8.77)/g2 + (g1*g2^7*t^8.81)/g3^2 + 2*g1*g2^4*g3*t^8.81 + 2*g1*g2*g3^4*t^8.81 + (g1*g3^7*t^8.81)/g2^2 - g2^6*t^8.86 - 3*g2^3*g3^3*t^8.86 - g3^6*t^8.86 - (2*g2^5*g3^2*t^8.9)/g1 - (2*g2^2*g3^5*t^8.9)/g1 - t^4.05/(g2*g3*y) - (g1*t^6.1)/(g2^2*g3^5*y) - (g1*t^6.1)/(g2^5*g3^2*y) - t^6.14/(g2^6*y) - t^6.14/(g3^6*y) - t^6.14/(g2^3*g3^3*y) + (g1^2*t^7.1)/(g2^5*g3^5*y) + (g1*t^7.14)/(g2^9*y) + (g1*t^7.14)/(g3^9*y) + (2*g1*t^7.14)/(g2^3*g3^6*y) + (2*g1*t^7.14)/(g2^6*g3^3*y) + t^7.19/(g2*g3^7*y) + t^7.19/(g2^4*g3^4*y) + t^7.19/(g2^7*g3*y) + (g1*g2^2*t^7.91)/(g3*y) + (g1*g3^2*t^7.91)/(g2*y) + (2*g2^4*t^7.95)/(g3^2*y) + (2*g2*g3*t^7.95)/y + (2*g3^4*t^7.95)/(g2^2*y) + (g2^3*t^8.)/(g1*y) + (g3^3*t^8.)/(g1*y) - (g1^2*t^8.14)/(g2^3*g3^9*y) - (g1^2*t^8.14)/(g2^6*g3^6*y) - (g1^2*t^8.14)/(g2^9*g3^3*y) - (g1*t^8.19)/(g2*g3^10*y) - (2*g1*t^8.19)/(g2^4*g3^7*y) - (2*g1*t^8.19)/(g2^7*g3^4*y) - (g1*t^8.19)/(g2^10*g3*y) - (g2*t^8.23)/(g3^11*y) - t^8.23/(g2^2*g3^8*y) - (2*t^8.23)/(g2^5*g3^5*y) - t^8.23/(g2^8*g3^2*y) - (g3*t^8.23)/(g2^11*y) + (g1^2*g2^2*t^8.91)/(g3^4*y) + (2*g1^2*t^8.91)/(g2*g3*y) + (g1^2*g3^2*t^8.91)/(g2^4*y) + (g1*g2^4*t^8.95)/(g3^5*y) + (3*g1*g2*t^8.95)/(g3^2*y) + (3*g1*g3*t^8.95)/(g2^2*y) + (g1*g3^4*t^8.95)/(g2^5*y) - (t^4.05*y)/(g2*g3) - (g1*t^6.1*y)/(g2^2*g3^5) - (g1*t^6.1*y)/(g2^5*g3^2) - (t^6.14*y)/g2^6 - (t^6.14*y)/g3^6 - (t^6.14*y)/(g2^3*g3^3) + (g1^2*t^7.1*y)/(g2^5*g3^5) + (g1*t^7.14*y)/g2^9 + (g1*t^7.14*y)/g3^9 + (2*g1*t^7.14*y)/(g2^3*g3^6) + (2*g1*t^7.14*y)/(g2^6*g3^3) + (t^7.19*y)/(g2*g3^7) + (t^7.19*y)/(g2^4*g3^4) + (t^7.19*y)/(g2^7*g3) + (g1*g2^2*t^7.91*y)/g3 + (g1*g3^2*t^7.91*y)/g2 + (2*g2^4*t^7.95*y)/g3^2 + 2*g2*g3*t^7.95*y + (2*g3^4*t^7.95*y)/g2^2 + (g2^3*t^8.*y)/g1 + (g3^3*t^8.*y)/g1 - (g1^2*t^8.14*y)/(g2^3*g3^9) - (g1^2*t^8.14*y)/(g2^6*g3^6) - (g1^2*t^8.14*y)/(g2^9*g3^3) - (g1*t^8.19*y)/(g2*g3^10) - (2*g1*t^8.19*y)/(g2^4*g3^7) - (2*g1*t^8.19*y)/(g2^7*g3^4) - (g1*t^8.19*y)/(g2^10*g3) - (g2*t^8.23*y)/g3^11 - (t^8.23*y)/(g2^2*g3^8) - (2*t^8.23*y)/(g2^5*g3^5) - (t^8.23*y)/(g2^8*g3^2) - (g3*t^8.23*y)/g2^11 + (g1^2*g2^2*t^8.91*y)/g3^4 + (2*g1^2*t^8.91*y)/(g2*g3) + (g1^2*g3^2*t^8.91*y)/g2^4 + (g1*g2^4*t^8.95*y)/g3^5 + (3*g1*g2*t^8.95*y)/g3^2 + (3*g1*g3*t^8.95*y)/g2^2 + (g1*g3^4*t^8.95*y)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
120 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ 0.669 0.8353 0.8009 [X:[], M:[0.6881, 0.7026, 0.6965], q:[0.835, 0.8152], qb:[0.4769, 0.4738], phi:[0.3498]] t^2.06 + t^2.09 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.88 + t^3.9 + t^3.93 + t^4.13 + t^4.15 + t^4.16 + t^4.17 + t^4.18 + t^4.19 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.92 + t^4.94 + 2*t^4.95 + t^4.96 + t^5.7 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.98 + t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y detail