Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1712 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.6897 0.8762 0.7872 [M:[0.6829, 0.6979, 0.6979, 0.6829], q:[0.8406, 0.8104], qb:[0.4765, 0.4765], phi:[0.349]] [M:[[1, -4, -1], [0, 1, -5], [0, -5, 1], [1, -1, -4]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ ${}M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -2 2*t^2.049 + 3*t^2.094 + t^2.859 + 2*t^3.861 + t^3.906 + 3*t^4.097 + 6*t^4.142 + 6*t^4.188 + 2*t^4.908 + 4*t^4.953 + t^5.718 + 4*t^5.909 + 6*t^5.955 - 2*t^6. - 2*t^6.045 + 4*t^6.146 + 9*t^6.191 + 12*t^6.236 + 10*t^6.282 + 2*t^6.72 + t^6.765 + 3*t^6.956 + 6*t^7.002 + 5*t^7.047 - 2*t^7.092 + 3*t^7.722 + 2*t^7.767 - 2*t^7.858 + 6*t^7.958 + 11*t^8.003 + 2*t^8.049 - 12*t^8.094 - 6*t^8.139 + 5*t^8.194 + 12*t^8.24 + 18*t^8.285 + 20*t^8.33 + 15*t^8.375 + t^8.578 + 4*t^8.769 + 6*t^8.814 - 5*t^8.859 - 4*t^8.905 - t^4.047/y - (2*t^6.095)/y - (3*t^6.141)/y + t^7.097/y + (6*t^7.142)/y + (3*t^7.188)/y + (2*t^7.908)/y + (6*t^7.953)/y + (2*t^7.998)/y - (3*t^8.144)/y - (6*t^8.189)/y - (6*t^8.235)/y + (4*t^8.909)/y + (8*t^8.955)/y - t^4.047*y - 2*t^6.095*y - 3*t^6.141*y + t^7.097*y + 6*t^7.142*y + 3*t^7.188*y + 2*t^7.908*y + 6*t^7.953*y + 2*t^7.998*y - 3*t^8.144*y - 6*t^8.189*y - 6*t^8.235*y + 4*t^8.909*y + 8*t^8.955*y (g1*t^2.049)/(g2*g3^4) + (g1*t^2.049)/(g2^4*g3) + (g2*t^2.094)/g3^5 + t^2.094/(g2^2*g3^2) + (g3*t^2.094)/g2^5 + g2^3*g3^3*t^2.859 + g1*g2^3*t^3.861 + g1*g3^3*t^3.861 + g2^2*g3^2*t^3.906 + (g1^2*t^4.097)/(g2^2*g3^8) + (g1^2*t^4.097)/(g2^5*g3^5) + (g1^2*t^4.097)/(g2^8*g3^2) + (g1*t^4.142)/g2^9 + (g1*t^4.142)/g3^9 + (2*g1*t^4.142)/(g2^3*g3^6) + (2*g1*t^4.142)/(g2^6*g3^3) + (g2^2*t^4.188)/g3^10 + t^4.188/(g2*g3^7) + (2*t^4.188)/(g2^4*g3^4) + t^4.188/(g2^7*g3) + (g3^2*t^4.188)/g2^10 + (g1*g2^2*t^4.908)/g3 + (g1*g3^2*t^4.908)/g2 + (g2^4*t^4.953)/g3^2 + 2*g2*g3*t^4.953 + (g3^4*t^4.953)/g2^2 + g2^6*g3^6*t^5.718 + (g1^2*g2^2*t^5.909)/g3^4 + (2*g1^2*t^5.909)/(g2*g3) + (g1^2*g3^2*t^5.909)/g2^4 + (g1*g2^4*t^5.955)/g3^5 + (2*g1*g2*t^5.955)/g3^2 + (2*g1*g3*t^5.955)/g2^2 + (g1*g3^4*t^5.955)/g2^5 - 2*t^6. - (g2^2*t^6.045)/(g1*g3) - (g3^2*t^6.045)/(g1*g2) + (g1^3*t^6.146)/(g2^3*g3^12) + (g1^3*t^6.146)/(g2^6*g3^9) + (g1^3*t^6.146)/(g2^9*g3^6) + (g1^3*t^6.146)/(g2^12*g3^3) + (g1^2*t^6.191)/(g2*g3^13) + (2*g1^2*t^6.191)/(g2^4*g3^10) + (3*g1^2*t^6.191)/(g2^7*g3^7) + (2*g1^2*t^6.191)/(g2^10*g3^4) + (g1^2*t^6.191)/(g2^13*g3) + (g1*g2*t^6.236)/g3^14 + (2*g1*t^6.236)/(g2^2*g3^11) + (3*g1*t^6.236)/(g2^5*g3^8) + (3*g1*t^6.236)/(g2^8*g3^5) + (2*g1*t^6.236)/(g2^11*g3^2) + (g1*g3*t^6.236)/g2^14 + t^6.282/g2^12 + (g2^3*t^6.282)/g3^15 + t^6.282/g3^12 + (2*t^6.282)/(g2^3*g3^9) + (2*t^6.282)/(g2^6*g3^6) + (2*t^6.282)/(g2^9*g3^3) + (g3^3*t^6.282)/g2^15 + g1*g2^6*g3^3*t^6.72 + g1*g2^3*g3^6*t^6.72 + g2^5*g3^5*t^6.765 + (g1^2*g2*t^6.956)/g3^5 + (g1^2*t^6.956)/(g2^2*g3^2) + (g1^2*g3*t^6.956)/g2^5 + (2*g1*t^7.002)/g2^3 + (g1*g2^3*t^7.002)/g3^6 + (2*g1*t^7.002)/g3^3 + (g1*g3^3*t^7.002)/g2^6 + (g2^5*t^7.047)/g3^7 + (g2^2*t^7.047)/g3^4 + t^7.047/(g2*g3) + (g3^2*t^7.047)/g2^4 + (g3^5*t^7.047)/g2^7 - (g2*t^7.092)/(g1*g3^2) - (g3*t^7.092)/(g1*g2^2) + g1^2*g2^6*t^7.722 + g1^2*g2^3*g3^3*t^7.722 + g1^2*g3^6*t^7.722 + g1*g2^5*g3^2*t^7.767 + g1*g2^2*g3^5*t^7.767 - (g2^6*g3^3*t^7.858)/g1 - (g2^3*g3^6*t^7.858)/g1 + (g1^3*g2*t^7.958)/g3^8 + (2*g1^3*t^7.958)/(g2^2*g3^5) + (2*g1^3*t^7.958)/(g2^5*g3^2) + (g1^3*g3*t^7.958)/g2^8 + (3*g1^2*t^8.003)/g2^6 + (g1^2*g2^3*t^8.003)/g3^9 + (3*g1^2*t^8.003)/g3^6 + (3*g1^2*t^8.003)/(g2^3*g3^3) + (g1^2*g3^3*t^8.003)/g2^9 + (g1*g2^5*t^8.049)/g3^10 + (g1*g2^2*t^8.049)/g3^7 - (g1*t^8.049)/(g2*g3^4) - (g1*t^8.049)/(g2^4*g3) + (g1*g3^2*t^8.049)/g2^7 + (g1*g3^5*t^8.049)/g2^10 - (4*g2*t^8.094)/g3^5 - (4*t^8.094)/(g2^2*g3^2) - (4*g3*t^8.094)/g2^5 - (2*t^8.139)/(g1*g2^3) - (g2^3*t^8.139)/(g1*g3^6) - (2*t^8.139)/(g1*g3^3) - (g3^3*t^8.139)/(g1*g2^6) + (g1^4*t^8.194)/(g2^4*g3^16) + (g1^4*t^8.194)/(g2^7*g3^13) + (g1^4*t^8.194)/(g2^10*g3^10) + (g1^4*t^8.194)/(g2^13*g3^7) + (g1^4*t^8.194)/(g2^16*g3^4) + (g1^3*t^8.24)/(g2^2*g3^17) + (2*g1^3*t^8.24)/(g2^5*g3^14) + (3*g1^3*t^8.24)/(g2^8*g3^11) + (3*g1^3*t^8.24)/(g2^11*g3^8) + (2*g1^3*t^8.24)/(g2^14*g3^5) + (g1^3*t^8.24)/(g2^17*g3^2) + (g1^2*t^8.285)/g2^18 + (g1^2*t^8.285)/g3^18 + (2*g1^2*t^8.285)/(g2^3*g3^15) + (4*g1^2*t^8.285)/(g2^6*g3^12) + (4*g1^2*t^8.285)/(g2^9*g3^9) + (4*g1^2*t^8.285)/(g2^12*g3^6) + (2*g1^2*t^8.285)/(g2^15*g3^3) + (g1*g2^2*t^8.33)/g3^19 + (2*g1*t^8.33)/(g2*g3^16) + (3*g1*t^8.33)/(g2^4*g3^13) + (4*g1*t^8.33)/(g2^7*g3^10) + (4*g1*t^8.33)/(g2^10*g3^7) + (3*g1*t^8.33)/(g2^13*g3^4) + (2*g1*t^8.33)/(g2^16*g3) + (g1*g3^2*t^8.33)/g2^19 + (g2^4*t^8.375)/g3^20 + (g2*t^8.375)/g3^17 + (2*t^8.375)/(g2^2*g3^14) + (2*t^8.375)/(g2^5*g3^11) + (3*t^8.375)/(g2^8*g3^8) + (2*t^8.375)/(g2^11*g3^5) + (2*t^8.375)/(g2^14*g3^2) + (g3*t^8.375)/g2^17 + (g3^4*t^8.375)/g2^20 + g2^9*g3^9*t^8.578 + (g1^2*g2^5*t^8.769)/g3 + 2*g1^2*g2^2*g3^2*t^8.769 + (g1^2*g3^5*t^8.769)/g2 + (g1*g2^7*t^8.814)/g3^2 + 2*g1*g2^4*g3*t^8.814 + 2*g1*g2*g3^4*t^8.814 + (g1*g3^7*t^8.814)/g2^2 - g2^6*t^8.859 - 3*g2^3*g3^3*t^8.859 - g3^6*t^8.859 - (2*g2^5*g3^2*t^8.905)/g1 - (2*g2^2*g3^5*t^8.905)/g1 - t^4.047/(g2*g3*y) - (g1*t^6.095)/(g2^2*g3^5*y) - (g1*t^6.095)/(g2^5*g3^2*y) - t^6.141/(g2^6*y) - t^6.141/(g3^6*y) - t^6.141/(g2^3*g3^3*y) + (g1^2*t^7.097)/(g2^5*g3^5*y) + (g1*t^7.142)/(g2^9*y) + (g1*t^7.142)/(g3^9*y) + (2*g1*t^7.142)/(g2^3*g3^6*y) + (2*g1*t^7.142)/(g2^6*g3^3*y) + t^7.188/(g2*g3^7*y) + t^7.188/(g2^4*g3^4*y) + t^7.188/(g2^7*g3*y) + (g1*g2^2*t^7.908)/(g3*y) + (g1*g3^2*t^7.908)/(g2*y) + (2*g2^4*t^7.953)/(g3^2*y) + (2*g2*g3*t^7.953)/y + (2*g3^4*t^7.953)/(g2^2*y) + (g2^3*t^7.998)/(g1*y) + (g3^3*t^7.998)/(g1*y) - (g1^2*t^8.144)/(g2^3*g3^9*y) - (g1^2*t^8.144)/(g2^6*g3^6*y) - (g1^2*t^8.144)/(g2^9*g3^3*y) - (g1*t^8.189)/(g2*g3^10*y) - (2*g1*t^8.189)/(g2^4*g3^7*y) - (2*g1*t^8.189)/(g2^7*g3^4*y) - (g1*t^8.189)/(g2^10*g3*y) - (g2*t^8.235)/(g3^11*y) - t^8.235/(g2^2*g3^8*y) - (2*t^8.235)/(g2^5*g3^5*y) - t^8.235/(g2^8*g3^2*y) - (g3*t^8.235)/(g2^11*y) + (g1^2*g2^2*t^8.909)/(g3^4*y) + (2*g1^2*t^8.909)/(g2*g3*y) + (g1^2*g3^2*t^8.909)/(g2^4*y) + (g1*g2^4*t^8.955)/(g3^5*y) + (3*g1*g2*t^8.955)/(g3^2*y) + (3*g1*g3*t^8.955)/(g2^2*y) + (g1*g3^4*t^8.955)/(g2^5*y) - (t^4.047*y)/(g2*g3) - (g1*t^6.095*y)/(g2^2*g3^5) - (g1*t^6.095*y)/(g2^5*g3^2) - (t^6.141*y)/g2^6 - (t^6.141*y)/g3^6 - (t^6.141*y)/(g2^3*g3^3) + (g1^2*t^7.097*y)/(g2^5*g3^5) + (g1*t^7.142*y)/g2^9 + (g1*t^7.142*y)/g3^9 + (2*g1*t^7.142*y)/(g2^3*g3^6) + (2*g1*t^7.142*y)/(g2^6*g3^3) + (t^7.188*y)/(g2*g3^7) + (t^7.188*y)/(g2^4*g3^4) + (t^7.188*y)/(g2^7*g3) + (g1*g2^2*t^7.908*y)/g3 + (g1*g3^2*t^7.908*y)/g2 + (2*g2^4*t^7.953*y)/g3^2 + 2*g2*g3*t^7.953*y + (2*g3^4*t^7.953*y)/g2^2 + (g2^3*t^7.998*y)/g1 + (g3^3*t^7.998*y)/g1 - (g1^2*t^8.144*y)/(g2^3*g3^9) - (g1^2*t^8.144*y)/(g2^6*g3^6) - (g1^2*t^8.144*y)/(g2^9*g3^3) - (g1*t^8.189*y)/(g2*g3^10) - (2*g1*t^8.189*y)/(g2^4*g3^7) - (2*g1*t^8.189*y)/(g2^7*g3^4) - (g1*t^8.189*y)/(g2^10*g3) - (g2*t^8.235*y)/g3^11 - (t^8.235*y)/(g2^2*g3^8) - (2*t^8.235*y)/(g2^5*g3^5) - (t^8.235*y)/(g2^8*g3^2) - (g3*t^8.235*y)/g2^11 + (g1^2*g2^2*t^8.909*y)/g3^4 + (2*g1^2*t^8.909*y)/(g2*g3) + (g1^2*g3^2*t^8.909*y)/g2^4 + (g1*g2^4*t^8.955*y)/g3^5 + (3*g1*g2*t^8.955*y)/g3^2 + (3*g1*g3*t^8.955*y)/g2^2 + (g1*g3^4*t^8.955*y)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
120 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ 0.669 0.8353 0.8009 [M:[0.6881, 0.7026, 0.6965], q:[0.835, 0.8152], qb:[0.4769, 0.4738], phi:[0.3498]] t^2.064 + t^2.089 + t^2.099 + t^2.108 + t^2.852 + t^3.867 + t^3.876 + t^3.901 + t^3.926 + t^4.129 + t^4.154 + t^4.163 + t^4.172 + t^4.179 + t^4.188 + 2*t^4.197 + t^4.206 + t^4.216 + t^4.916 + t^4.941 + 2*t^4.951 + t^4.96 + t^5.704 + t^5.931 + t^5.941 + t^5.956 + 2*t^5.966 + t^5.975 + t^5.984 + t^5.991 - 2*t^6. - t^4.049/y - t^4.049*y detail