Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
198 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_2M_4$ 0.6487 0.7983 0.8127 [X:[], M:[0.6881, 0.7271, 0.6881, 1.2729], q:[0.8329, 0.8133], qb:[0.4791, 0.4596], phi:[0.3538]] [X:[], M:[[1, -4, -1], [0, 1, -5], [0, -5, 1], [0, -1, 5]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_4$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1M_3$, $ M_1^2$, $ M_3^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_3q_2\tilde{q}_2$, $ M_3M_4$, $ M_1q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 2*t^2.06 + t^2.12 + t^2.82 + 2*t^3.82 + 3*t^3.88 + 3*t^4.13 + 2*t^4.19 + t^4.25 + 2*t^4.88 + 2*t^4.94 + t^5.63 + 4*t^5.88 + 6*t^5.94 - 2*t^6. - 2*t^6.06 + 4*t^6.19 + 3*t^6.25 + 2*t^6.31 + t^6.37 + 2*t^6.63 + 3*t^6.69 + 3*t^6.94 + 2*t^7. - 2*t^7.06 - 2*t^7.12 + 3*t^7.64 + 6*t^7.7 + 3*t^7.75 - 2*t^7.81 + 6*t^7.95 + 9*t^8.01 - 4*t^8.06 - 5*t^8.12 - 2*t^8.18 + 5*t^8.26 + 4*t^8.32 + 3*t^8.37 + 2*t^8.43 + t^8.45 + t^8.49 + 4*t^8.7 + 6*t^8.76 - 3*t^8.82 - 4*t^8.87 - t^4.06/y - (2*t^6.13)/y - t^6.18/y + t^7.13/y + (2*t^7.19)/y + (2*t^7.88)/y + (2*t^7.94)/y + (2*t^8.)/y - (3*t^8.19)/y - (2*t^8.25)/y - t^8.31/y + (4*t^8.88)/y + (8*t^8.94)/y - t^4.06*y - 2*t^6.13*y - t^6.18*y + t^7.13*y + 2*t^7.19*y + 2*t^7.88*y + 2*t^7.94*y + 2*t^8.*y - 3*t^8.19*y - 2*t^8.25*y - t^8.31*y + 4*t^8.88*y + 8*t^8.94*y (g1*t^2.06)/(g2^4*g3) + (g3*t^2.06)/g2^5 + t^2.12/(g2^2*g3^2) + g2^3*g3^3*t^2.82 + g1*g3^3*t^3.82 + (g3^5*t^3.82)/g2 + g1*g2^3*t^3.88 + g2^2*g3^2*t^3.88 + (g2*g3^4*t^3.88)/g1 + (g1*t^4.13)/g2^9 + (g1^2*t^4.13)/(g2^8*g3^2) + (g3^2*t^4.13)/g2^10 + (g1*t^4.19)/(g2^6*g3^3) + t^4.19/(g2^7*g3) + t^4.25/(g2^4*g3^4) + (g1*g3^2*t^4.88)/g2 + (g3^4*t^4.88)/g2^2 + 2*g2*g3*t^4.94 + g2^6*g3^6*t^5.63 + (g1^2*g3^2*t^5.88)/g2^4 + (2*g1*g3^4*t^5.88)/g2^5 + (g3^6*t^5.88)/g2^6 + (g1^2*t^5.94)/(g2*g3) + (2*g1*g3*t^5.94)/g2^2 + (2*g3^3*t^5.94)/g2^3 + (g3^5*t^5.94)/(g1*g2^4) - 2*t^6. - (g2^3*t^6.06)/g3^3 - (g2^2*t^6.06)/(g1*g3) + (g1^3*t^6.19)/(g2^12*g3^3) + (g1^2*t^6.19)/(g2^13*g3) + (g1*g3*t^6.19)/g2^14 + (g3^3*t^6.19)/g2^15 + t^6.25/g2^12 + (g1^2*t^6.25)/(g2^10*g3^4) + (g1*t^6.25)/(g2^11*g3^2) + (g1*t^6.31)/(g2^8*g3^5) + t^6.31/(g2^9*g3^3) + t^6.37/(g2^6*g3^6) + g1*g2^3*g3^6*t^6.63 + g2^2*g3^8*t^6.63 + g1*g2^6*g3^3*t^6.69 + g2^5*g3^5*t^6.69 + (g2^4*g3^7*t^6.69)/g1 + (g1^2*g3*t^6.94)/g2^5 + (g1*g3^3*t^6.94)/g2^6 + (g3^5*t^6.94)/g2^7 + (g1*t^7.)/g2^3 + (g3^2*t^7.)/g2^4 - (g1*t^7.06)/g3^3 - (g3*t^7.06)/(g1*g2^2) - (g2^2*t^7.12)/g3^4 - (g2*t^7.12)/(g1*g3^2) + g1^2*g3^6*t^7.64 + (g1*g3^8*t^7.64)/g2 + (g3^10*t^7.64)/g2^2 + g1^2*g2^3*g3^3*t^7.7 + 2*g1*g2^2*g3^5*t^7.7 + 2*g2*g3^7*t^7.7 + (g3^9*t^7.7)/g1 + g1^2*g2^6*t^7.75 + g2^4*g3^4*t^7.75 + (g2^2*g3^8*t^7.75)/g1^2 - g2^7*g3*t^7.81 - (g2^6*g3^3*t^7.81)/g1 + (g1^3*g3*t^7.95)/g2^8 + (2*g1^2*g3^3*t^7.95)/g2^9 + (2*g1*g3^5*t^7.95)/g2^10 + (g3^7*t^7.95)/g2^11 + (2*g1^2*t^8.01)/g2^6 + (g1^3*t^8.01)/(g2^5*g3^2) + (3*g1*g3^2*t^8.01)/g2^7 + (2*g3^4*t^8.01)/g2^8 + (g3^6*t^8.01)/(g1*g2^9) - (2*g1*t^8.06)/(g2^4*g3) - (2*g3*t^8.06)/g2^5 - t^8.12/(g1*g2^3) - (g1*t^8.12)/(g2*g3^4) - (3*t^8.12)/(g2^2*g3^2) - (g2*t^8.18)/g3^5 - t^8.18/(g1*g3^3) + (g1^2*t^8.26)/g2^18 + (g1^4*t^8.26)/(g2^16*g3^4) + (g1^3*t^8.26)/(g2^17*g3^2) + (g1*g3^2*t^8.26)/g2^19 + (g3^4*t^8.26)/g2^20 + (g1^3*t^8.32)/(g2^14*g3^5) + (g1^2*t^8.32)/(g2^15*g3^3) + (g1*t^8.32)/(g2^16*g3) + (g3*t^8.32)/g2^17 + (g1^2*t^8.37)/(g2^12*g3^6) + (g1*t^8.37)/(g2^13*g3^4) + t^8.37/(g2^14*g3^2) + (g1*t^8.43)/(g2^10*g3^7) + t^8.43/(g2^11*g3^5) + g2^9*g3^9*t^8.45 + t^8.49/(g2^8*g3^8) + (g1^2*g3^5*t^8.7)/g2 + (2*g1*g3^7*t^8.7)/g2^2 + (g3^9*t^8.7)/g2^3 + g1^2*g2^2*g3^2*t^8.76 + 2*g1*g2*g3^4*t^8.76 + 2*g3^6*t^8.76 + (g3^8*t^8.76)/(g1*g2) - 3*g2^3*g3^3*t^8.82 - 2*g2^6*t^8.87 - (2*g2^5*g3^2*t^8.87)/g1 - t^4.06/(g2*g3*y) - t^6.13/(g2^6*y) - (g1*t^6.13)/(g2^5*g3^2*y) - t^6.18/(g2^3*g3^3*y) + (g1*t^7.13)/(g2^9*y) + (g1*t^7.19)/(g2^6*g3^3*y) + t^7.19/(g2^7*g3*y) + (g1*g3^2*t^7.88)/(g2*y) + (g3^4*t^7.88)/(g2^2*y) + (2*g2*g3*t^7.94)/y + (g2^3*t^8.)/(g1*y) + (g2^4*t^8.)/(g3^2*y) - (g1^2*t^8.19)/(g2^9*g3^3*y) - (g1*t^8.19)/(g2^10*g3*y) - (g3*t^8.19)/(g2^11*y) - (g1*t^8.25)/(g2^7*g3^4*y) - t^8.25/(g2^8*g3^2*y) - t^8.31/(g2^5*g3^5*y) + (g1^2*g3^2*t^8.88)/(g2^4*y) + (2*g1*g3^4*t^8.88)/(g2^5*y) + (g3^6*t^8.88)/(g2^6*y) + (g1^2*t^8.94)/(g2*g3*y) + (3*g1*g3*t^8.94)/(g2^2*y) + (3*g3^3*t^8.94)/(g2^3*y) + (g3^5*t^8.94)/(g1*g2^4*y) - (t^4.06*y)/(g2*g3) - (t^6.13*y)/g2^6 - (g1*t^6.13*y)/(g2^5*g3^2) - (t^6.18*y)/(g2^3*g3^3) + (g1*t^7.13*y)/g2^9 + (g1*t^7.19*y)/(g2^6*g3^3) + (t^7.19*y)/(g2^7*g3) + (g1*g3^2*t^7.88*y)/g2 + (g3^4*t^7.88*y)/g2^2 + 2*g2*g3*t^7.94*y + (g2^3*t^8.*y)/g1 + (g2^4*t^8.*y)/g3^2 - (g1^2*t^8.19*y)/(g2^9*g3^3) - (g1*t^8.19*y)/(g2^10*g3) - (g3*t^8.19*y)/g2^11 - (g1*t^8.25*y)/(g2^7*g3^4) - (t^8.25*y)/(g2^8*g3^2) - (t^8.31*y)/(g2^5*g3^5) + (g1^2*g3^2*t^8.88*y)/g2^4 + (2*g1*g3^4*t^8.88*y)/g2^5 + (g3^6*t^8.88*y)/g2^6 + (g1^2*t^8.94*y)/(g2*g3) + (3*g1*g3*t^8.94*y)/g2^2 + (3*g3^3*t^8.94*y)/g2^3 + (g3^5*t^8.94*y)/(g1*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
315 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_2M_4$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6692 0.8369 0.7996 [X:[], M:[0.6851, 0.7192, 0.6851, 1.2808, 0.7022], q:[0.833, 0.8159], qb:[0.4819, 0.4649], phi:[0.3511]] 2*t^2.06 + 2*t^2.11 + t^2.84 + 2*t^3.84 + 2*t^3.89 + 3*t^4.11 + 4*t^4.16 + 3*t^4.21 + 2*t^4.9 + 3*t^4.95 + t^5.68 + 4*t^5.9 + 6*t^5.95 - t^6. - t^4.05/y - t^4.05*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
120 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1^2$ 0.669 0.8353 0.8009 [X:[], M:[0.6881, 0.7026, 0.6965], q:[0.835, 0.8152], qb:[0.4769, 0.4738], phi:[0.3498]] t^2.06 + t^2.09 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.88 + t^3.9 + t^3.93 + t^4.13 + t^4.15 + t^4.16 + t^4.17 + t^4.18 + t^4.19 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.92 + t^4.94 + 2*t^4.95 + t^4.96 + t^5.7 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.98 + t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y detail