Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
200 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6895 0.8749 0.7881 [M:[0.6857, 0.6986, 0.6931, 0.6959], q:[0.8349, 0.8172], qb:[0.4795, 0.4767], phi:[0.3479]] [M:[[1, -4, -1], [0, 1, -5], [0, -5, 1], [0, -2, -2]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.057 + t^2.079 + 2*t^2.088 + t^2.096 + t^2.869 + t^3.882 + t^3.89 + t^3.935 + t^4.114 + t^4.136 + 2*t^4.145 + t^4.153 + t^4.159 + 2*t^4.167 + 4*t^4.175 + 2*t^4.183 + t^4.191 + t^4.926 + t^4.948 + 3*t^4.956 + t^4.964 + t^5.737 + t^5.939 + t^5.947 + t^5.961 + 2*t^5.969 + 2*t^5.978 + t^5.986 - 3*t^6. - t^6.008 + t^6.014 + t^6.022 + t^6.171 + t^6.193 + 2*t^6.202 + t^6.21 + t^6.216 + 2*t^6.224 + 4*t^6.232 + t^6.238 + 2*t^6.24 + 2*t^6.246 + t^6.248 + 4*t^6.255 + 6*t^6.263 + 4*t^6.271 + 2*t^6.279 + t^6.287 + t^6.75 + t^6.759 + t^6.804 + t^6.983 + t^7.005 + 2*t^7.013 + t^7.027 + 2*t^7.036 + 4*t^7.044 + 2*t^7.052 + t^7.06 - t^7.066 - t^7.074 + t^7.764 + t^7.772 + t^7.78 - t^7.802 + t^7.817 + t^7.825 - t^7.847 - t^7.855 + t^7.87 + t^7.996 + t^8.004 + t^8.018 + 2*t^8.026 + 2*t^8.035 + t^8.041 + t^8.043 + 2*t^8.049 + 2*t^8.065 + 2*t^8.073 - 4*t^8.079 + t^8.081 - 7*t^8.088 + t^8.094 - 5*t^8.096 + t^8.102 - t^8.104 + t^8.11 - t^8.118 + t^8.228 + t^8.25 + 2*t^8.258 + t^8.267 + t^8.273 + 2*t^8.281 + 4*t^8.289 + t^8.295 + 2*t^8.297 + 2*t^8.303 + t^8.305 + 4*t^8.312 + t^8.318 + 6*t^8.32 + 2*t^8.326 + 4*t^8.328 + 4*t^8.334 + 2*t^8.336 + 6*t^8.342 + t^8.344 + 9*t^8.35 + 6*t^8.358 + 4*t^8.367 + 2*t^8.375 + t^8.383 + t^8.606 + t^8.807 + t^8.816 + t^8.83 + 2*t^8.838 + 2*t^8.846 + t^8.854 - t^8.86 - 5*t^8.869 - 2*t^8.877 + t^8.883 + t^8.891 - t^8.899 - t^4.044/y - t^6.101/y - t^6.123/y - (2*t^6.131)/y - t^6.14/y + t^7.136/y + (2*t^7.145)/y + t^7.153/y + (2*t^7.167)/y + (2*t^7.175)/y + (2*t^7.183)/y + t^7.926/y + (2*t^7.948)/y + (4*t^7.956)/y + (2*t^7.964)/y + t^7.987/y - t^8.158/y - t^8.18/y - (2*t^8.188)/y - t^8.196/y - t^8.203/y - (2*t^8.211)/y - (4*t^8.219)/y - (2*t^8.227)/y - t^8.235/y + t^8.939/y + t^8.947/y + t^8.961/y + (3*t^8.969)/y + (3*t^8.978)/y + t^8.986/y + t^8.992/y - t^4.044*y - t^6.101*y - t^6.123*y - 2*t^6.131*y - t^6.14*y + t^7.136*y + 2*t^7.145*y + t^7.153*y + 2*t^7.167*y + 2*t^7.175*y + 2*t^7.183*y + t^7.926*y + 2*t^7.948*y + 4*t^7.956*y + 2*t^7.964*y + t^7.987*y - t^8.158*y - t^8.18*y - 2*t^8.188*y - t^8.196*y - t^8.203*y - 2*t^8.211*y - 4*t^8.219*y - 2*t^8.227*y - t^8.235*y + t^8.939*y + t^8.947*y + t^8.961*y + 3*t^8.969*y + 3*t^8.978*y + t^8.986*y + t^8.992*y (g1*t^2.057)/(g2^4*g3) + (g3*t^2.079)/g2^5 + (2*t^2.088)/(g2^2*g3^2) + (g2*t^2.096)/g3^5 + g2^3*g3^3*t^2.869 + g1*g3^3*t^3.882 + g1*g2^3*t^3.89 + (g2*g3^4*t^3.935)/g1 + (g1^2*t^4.114)/(g2^8*g3^2) + (g1*t^4.136)/g2^9 + (2*g1*t^4.145)/(g2^6*g3^3) + (g1*t^4.153)/(g2^3*g3^6) + (g3^2*t^4.159)/g2^10 + (2*t^4.167)/(g2^7*g3) + (4*t^4.175)/(g2^4*g3^4) + (2*t^4.183)/(g2*g3^7) + (g2^2*t^4.191)/g3^10 + (g1*g3^2*t^4.926)/g2 + (g3^4*t^4.948)/g2^2 + 3*g2*g3*t^4.956 + (g2^4*t^4.964)/g3^2 + g2^6*g3^6*t^5.737 + (g1^2*g3^2*t^5.939)/g2^4 + (g1^2*t^5.947)/(g2*g3) + (g1*g3^4*t^5.961)/g2^5 + (2*g1*g3*t^5.969)/g2^2 + (2*g1*g2*t^5.978)/g3^2 + (g1*g2^4*t^5.986)/g3^5 - 3*t^6. - (g2^3*t^6.008)/g3^3 + (g3^5*t^6.014)/(g1*g2^4) + (g3^2*t^6.022)/(g1*g2) + (g1^3*t^6.171)/(g2^12*g3^3) + (g1^2*t^6.193)/(g2^13*g3) + (2*g1^2*t^6.202)/(g2^10*g3^4) + (g1^2*t^6.21)/(g2^7*g3^7) + (g1*g3*t^6.216)/g2^14 + (2*g1*t^6.224)/(g2^11*g3^2) + (4*g1*t^6.232)/(g2^8*g3^5) + (g3^3*t^6.238)/g2^15 + (2*g1*t^6.24)/(g2^5*g3^8) + (2*t^6.246)/g2^12 + (g1*t^6.248)/(g2^2*g3^11) + (4*t^6.255)/(g2^9*g3^3) + (6*t^6.263)/(g2^6*g3^6) + (4*t^6.271)/(g2^3*g3^9) + (2*t^6.279)/g3^12 + (g2^3*t^6.287)/g3^15 + g1*g2^3*g3^6*t^6.75 + g1*g2^6*g3^3*t^6.759 + (g2^4*g3^7*t^6.804)/g1 + (g1^2*g3*t^6.983)/g2^5 + (g1*g3^3*t^7.005)/g2^6 + (2*g1*t^7.013)/g2^3 + (g3^5*t^7.027)/g2^7 + (2*g3^2*t^7.036)/g2^4 + (4*t^7.044)/(g2*g3) + (2*g2^2*t^7.052)/g3^4 + (g2^5*t^7.06)/g3^7 - (g3*t^7.066)/(g1*g2^2) - (g2*t^7.074)/(g1*g3^2) + g1^2*g3^6*t^7.764 + g1^2*g2^3*g3^3*t^7.772 + g1^2*g2^6*t^7.78 - g1*g2^5*g3^2*t^7.802 + g2*g3^7*t^7.817 + g2^4*g3^4*t^7.825 - (g2^3*g3^6*t^7.847)/g1 - (g2^6*g3^3*t^7.855)/g1 + (g2^2*g3^8*t^7.87)/g1^2 + (g1^3*g3*t^7.996)/g2^8 + (g1^3*t^8.004)/(g2^5*g3^2) + (g1^2*g3^3*t^8.018)/g2^9 + (2*g1^2*t^8.026)/g2^6 + (2*g1^2*t^8.035)/(g2^3*g3^3) + (g1*g3^5*t^8.041)/g2^10 + (g1^2*t^8.043)/g3^6 + (2*g1*g3^2*t^8.049)/g2^7 + (2*g1*t^8.065)/(g2*g3^4) + (2*g1*g2^2*t^8.073)/g3^7 - (4*g3*t^8.079)/g2^5 + (g1*g2^5*t^8.081)/g3^10 - (7*t^8.088)/(g2^2*g3^2) + (g3^6*t^8.094)/(g1*g2^9) - (5*g2*t^8.096)/g3^5 + (g3^3*t^8.102)/(g1*g2^6) - (g2^4*t^8.104)/g3^8 + t^8.11/(g1*g2^3) - t^8.118/(g1*g3^3) + (g1^4*t^8.228)/(g2^16*g3^4) + (g1^3*t^8.25)/(g2^17*g3^2) + (2*g1^3*t^8.258)/(g2^14*g3^5) + (g1^3*t^8.267)/(g2^11*g3^8) + (g1^2*t^8.273)/g2^18 + (2*g1^2*t^8.281)/(g2^15*g3^3) + (4*g1^2*t^8.289)/(g2^12*g3^6) + (g1*g3^2*t^8.295)/g2^19 + (2*g1^2*t^8.297)/(g2^9*g3^9) + (2*g1*t^8.303)/(g2^16*g3) + (g1^2*t^8.305)/(g2^6*g3^12) + (4*g1*t^8.312)/(g2^13*g3^4) + (g3^4*t^8.318)/g2^20 + (6*g1*t^8.32)/(g2^10*g3^7) + (2*g3*t^8.326)/g2^17 + (4*g1*t^8.328)/(g2^7*g3^10) + (4*t^8.334)/(g2^14*g3^2) + (2*g1*t^8.336)/(g2^4*g3^13) + (6*t^8.342)/(g2^11*g3^5) + (g1*t^8.344)/(g2*g3^16) + (9*t^8.35)/(g2^8*g3^8) + (6*t^8.358)/(g2^5*g3^11) + (4*t^8.367)/(g2^2*g3^14) + (2*g2*t^8.375)/g3^17 + (g2^4*t^8.383)/g3^20 + g2^9*g3^9*t^8.606 + (g1^2*g3^5*t^8.807)/g2 + g1^2*g2^2*g3^2*t^8.816 + (g1*g3^7*t^8.83)/g2^2 + 2*g1*g2*g3^4*t^8.838 + 2*g1*g2^4*g3*t^8.846 + (g1*g2^7*t^8.854)/g3^2 - g3^6*t^8.86 - 5*g2^3*g3^3*t^8.869 - 2*g2^6*t^8.877 + (g3^8*t^8.883)/(g1*g2) + (g2^2*g3^5*t^8.891)/g1 - (g2^5*g3^2*t^8.899)/g1 - t^4.044/(g2*g3*y) - (g1*t^6.101)/(g2^5*g3^2*y) - t^6.123/(g2^6*y) - (2*t^6.131)/(g2^3*g3^3*y) - t^6.14/(g3^6*y) + (g1*t^7.136)/(g2^9*y) + (2*g1*t^7.145)/(g2^6*g3^3*y) + (g1*t^7.153)/(g2^3*g3^6*y) + (2*t^7.167)/(g2^7*g3*y) + (2*t^7.175)/(g2^4*g3^4*y) + (2*t^7.183)/(g2*g3^7*y) + (g1*g3^2*t^7.926)/(g2*y) + (2*g3^4*t^7.948)/(g2^2*y) + (4*g2*g3*t^7.956)/y + (2*g2^4*t^7.964)/(g3^2*y) + (g2^3*t^7.987)/(g1*y) - (g1^2*t^8.158)/(g2^9*g3^3*y) - (g1*t^8.18)/(g2^10*g3*y) - (2*g1*t^8.188)/(g2^7*g3^4*y) - (g1*t^8.196)/(g2^4*g3^7*y) - (g3*t^8.203)/(g2^11*y) - (2*t^8.211)/(g2^8*g3^2*y) - (4*t^8.219)/(g2^5*g3^5*y) - (2*t^8.227)/(g2^2*g3^8*y) - (g2*t^8.235)/(g3^11*y) + (g1^2*g3^2*t^8.939)/(g2^4*y) + (g1^2*t^8.947)/(g2*g3*y) + (g1*g3^4*t^8.961)/(g2^5*y) + (3*g1*g3*t^8.969)/(g2^2*y) + (3*g1*g2*t^8.978)/(g3^2*y) + (g1*g2^4*t^8.986)/(g3^5*y) + (g3^3*t^8.992)/(g2^3*y) - (t^4.044*y)/(g2*g3) - (g1*t^6.101*y)/(g2^5*g3^2) - (t^6.123*y)/g2^6 - (2*t^6.131*y)/(g2^3*g3^3) - (t^6.14*y)/g3^6 + (g1*t^7.136*y)/g2^9 + (2*g1*t^7.145*y)/(g2^6*g3^3) + (g1*t^7.153*y)/(g2^3*g3^6) + (2*t^7.167*y)/(g2^7*g3) + (2*t^7.175*y)/(g2^4*g3^4) + (2*t^7.183*y)/(g2*g3^7) + (g1*g3^2*t^7.926*y)/g2 + (2*g3^4*t^7.948*y)/g2^2 + 4*g2*g3*t^7.956*y + (2*g2^4*t^7.964*y)/g3^2 + (g2^3*t^7.987*y)/g1 - (g1^2*t^8.158*y)/(g2^9*g3^3) - (g1*t^8.18*y)/(g2^10*g3) - (2*g1*t^8.188*y)/(g2^7*g3^4) - (g1*t^8.196*y)/(g2^4*g3^7) - (g3*t^8.203*y)/g2^11 - (2*t^8.211*y)/(g2^8*g3^2) - (4*t^8.219*y)/(g2^5*g3^5) - (2*t^8.227*y)/(g2^2*g3^8) - (g2*t^8.235*y)/g3^11 + (g1^2*g3^2*t^8.939*y)/g2^4 + (g1^2*t^8.947*y)/(g2*g3) + (g1*g3^4*t^8.961*y)/g2^5 + (3*g1*g3*t^8.969*y)/g2^2 + (3*g1*g2*t^8.978*y)/g3^2 + (g1*g2^4*t^8.986*y)/g3^5 + (g3^3*t^8.992*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1727 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 0.6895 0.8745 0.7884 [M:[0.6921, 0.6921, 0.6981, 0.6951], q:[0.8308, 0.8217], qb:[0.4772, 0.4802], phi:[0.3476]] 2*t^2.076 + 2*t^2.085 + t^2.094 + t^2.872 + t^3.897 + t^3.906 + t^3.933 + 3*t^4.152 + 4*t^4.162 + 5*t^4.171 + 2*t^4.18 + t^4.189 + 2*t^4.948 + 3*t^4.957 + t^4.966 + t^5.744 + 2*t^5.973 + 3*t^5.982 + t^5.991 - 2*t^6. - t^4.043/y - t^4.043*y detail
1728 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.7103 0.916 0.7755 [M:[0.6811, 0.6946, 0.6946, 0.6946, 0.6811], q:[0.8399, 0.8128], qb:[0.4791, 0.4791], phi:[0.3473]] 2*t^2.043 + 4*t^2.084 + t^2.874 + 2*t^3.876 + 3*t^4.086 + 8*t^4.127 + 10*t^4.168 + 2*t^4.918 + 5*t^4.958 + t^5.749 + 4*t^5.919 + 6*t^5.959 - 5*t^6. - t^4.042/y - t^4.042*y detail
1729 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.7101 0.9145 0.7765 [M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.827, 0.827], qb:[0.481, 0.481], phi:[0.346]] 6*t^2.076 + t^2.886 + 2*t^3.924 + 21*t^4.152 + 7*t^4.962 + t^5.772 + 3*t^6. - t^4.038/y - t^4.038*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
120 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ 0.669 0.8353 0.8009 [M:[0.6881, 0.7026, 0.6965], q:[0.835, 0.8152], qb:[0.4769, 0.4738], phi:[0.3498]] t^2.064 + t^2.089 + t^2.099 + t^2.108 + t^2.852 + t^3.867 + t^3.876 + t^3.901 + t^3.926 + t^4.129 + t^4.154 + t^4.163 + t^4.172 + t^4.179 + t^4.188 + 2*t^4.197 + t^4.206 + t^4.216 + t^4.916 + t^4.941 + 2*t^4.951 + t^4.96 + t^5.704 + t^5.931 + t^5.941 + t^5.956 + 2*t^5.966 + t^5.975 + t^5.984 + t^5.991 - 2*t^6. - t^4.049/y - t^4.049*y detail