Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57747 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 1.0062 1.2289 0.8188 [X:[1.5, 1.5, 1.5, 1.5], M:[0.7183, 0.7183], q:[0.2606, 0.2606], qb:[0.2394, 0.2394], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[3, 2, 1], [3, 1, 2]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }X_{2}$, ${ }X_{3}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$ 2 2*t^2.15 + 5*t^3. + 2*t^3.65 + 3*t^4.31 + 9*t^4.5 + 12*t^5.15 + 2*t^5.35 + 4*t^5.81 + 2*t^6. + 4*t^6.46 + 26*t^6.65 - 2*t^6.85 + 22*t^7.31 + 33*t^7.5 + 6*t^7.96 + 10*t^8.15 - 12*t^8.35 + 5*t^8.62 + 47*t^8.81 - t^4.5/y - t^6./y - (2*t^6.65)/y + t^7.31/y + t^7.5/y + (8*t^8.15)/y + (2*t^8.35)/y + t^8.81/y - t^4.5*y - t^6.*y - 2*t^6.65*y + t^7.31*y + t^7.5*y + 8*t^8.15*y + 2*t^8.35*y + t^8.81*y g1^3*g2^2*g3*t^2.15 + g1^3*g2*g3^2*t^2.15 + t^3. + t^3./g2 + g2*t^3. + t^3./g3 + g3*t^3. + g1^3*g2*g3*t^3.65 + g1^3*g2^2*g3^2*t^3.65 + g1^6*g2^4*g3^2*t^4.31 + g1^6*g2^3*g3^3*t^4.31 + g1^6*g2^2*g3^4*t^4.31 + t^4.5 + (2*t^4.5)/g2 + 2*g2*t^4.5 + (2*t^4.5)/g3 + 2*g3*t^4.5 + g1^3*g2^2*t^5.15 + 3*g1^3*g2*g3*t^5.15 + g1^3*g2^2*g3*t^5.15 + g1^3*g2^3*g3*t^5.15 + g1^3*g3^2*t^5.15 + g1^3*g2*g3^2*t^5.15 + 3*g1^3*g2^2*g3^2*t^5.15 + g1^3*g2*g3^3*t^5.15 + t^5.35/(g1^3*g2*g3^2) + t^5.35/(g1^3*g2^2*g3) + g1^6*g2^3*g3^2*t^5.81 + g1^6*g2^2*g3^3*t^5.81 + g1^6*g2^4*g3^3*t^5.81 + g1^6*g2^3*g3^4*t^5.81 - 2*t^6. + t^6./g2^2 + g2^2*t^6. + t^6./g3^2 + g3^2*t^6. + g1^9*g2^6*g3^3*t^6.46 + g1^9*g2^5*g3^4*t^6.46 + g1^9*g2^4*g3^5*t^6.46 + g1^9*g2^3*g3^6*t^6.46 + g1^3*t^6.65 + g1^3*g2*t^6.65 + 2*g1^3*g2^2*t^6.65 + g1^3*g3*t^6.65 + 5*g1^3*g2*g3*t^6.65 + g1^3*g2^2*g3*t^6.65 + 2*g1^3*g2^3*g3*t^6.65 + 2*g1^3*g3^2*t^6.65 + g1^3*g2*g3^2*t^6.65 + 5*g1^3*g2^2*g3^2*t^6.65 + g1^3*g2^3*g3^2*t^6.65 + 2*g1^3*g2*g3^3*t^6.65 + g1^3*g2^2*g3^3*t^6.65 + g1^3*g2^3*g3^3*t^6.65 + t^6.85/(g1^3*g2^3) + t^6.85/(g1^3*g3^3) - (2*t^6.85)/(g1^3*g2^2*g3^2) - (2*t^6.85)/(g1^3*g2*g3) + g1^6*g2^4*g3*t^7.31 + g1^6*g2^2*g3^2*t^7.31 + 3*g1^6*g2^3*g3^2*t^7.31 + g1^6*g2^4*g3^2*t^7.31 + g1^6*g2^5*g3^2*t^7.31 + 3*g1^6*g2^2*g3^3*t^7.31 + 2*g1^6*g2^3*g3^3*t^7.31 + 3*g1^6*g2^4*g3^3*t^7.31 + g1^6*g2*g3^4*t^7.31 + g1^6*g2^2*g3^4*t^7.31 + 3*g1^6*g2^3*g3^4*t^7.31 + g1^6*g2^4*g3^4*t^7.31 + g1^6*g2^2*g3^5*t^7.31 + 7*t^7.5 + (2*t^7.5)/g2^2 + t^7.5/g2 + g2*t^7.5 + 2*g2^2*t^7.5 + (2*t^7.5)/g3^2 + t^7.5/g3 + (3*t^7.5)/(g2*g3) + (4*g2*t^7.5)/g3 + g3*t^7.5 + (4*g3*t^7.5)/g2 + 3*g2*g3*t^7.5 + 2*g3^2*t^7.5 + g1^9*g2^5*g3^3*t^7.96 + g1^9*g2^4*g3^4*t^7.96 + g1^9*g2^6*g3^4*t^7.96 + g1^9*g2^3*g3^5*t^7.96 + g1^9*g2^5*g3^5*t^7.96 + g1^9*g2^4*g3^6*t^7.96 - g1^3*t^8.15 + 2*g1^3*g2*t^8.15 + (g1^3*g2^2*t^8.15)/g3 + 2*g1^3*g3*t^8.15 + g1^3*g2^4*g3*t^8.15 + (g1^3*g3^2*t^8.15)/g2 + 2*g1^3*g2^3*g3^2*t^8.15 + 2*g1^3*g2^2*g3^3*t^8.15 - g1^3*g2^3*g3^3*t^8.15 + g1^3*g2*g3^4*t^8.15 - t^8.35/(g1^3*g2^3) - t^8.35/(g1^3*g2^2) - t^8.35/(g1^3*g3^3) - t^8.35/(g1^3*g2*g3^3) - t^8.35/(g1^3*g3^2) - (2*t^8.35)/(g1^3*g2^2*g3^2) - t^8.35/(g1^3*g2*g3^2) - t^8.35/(g1^3*g2^3*g3) - t^8.35/(g1^3*g2^2*g3) - (2*t^8.35)/(g1^3*g2*g3) + g1^12*g2^8*g3^4*t^8.62 + g1^12*g2^7*g3^5*t^8.62 + g1^12*g2^6*g3^6*t^8.62 + g1^12*g2^5*g3^7*t^8.62 + g1^12*g2^4*g3^8*t^8.62 + g1^6*g2^2*g3*t^8.81 + g1^6*g2^3*g3*t^8.81 + 2*g1^6*g2^4*g3*t^8.81 + g1^6*g2*g3^2*t^8.81 + 3*g1^6*g2^2*g3^2*t^8.81 + 5*g1^6*g2^3*g3^2*t^8.81 + g1^6*g2^4*g3^2*t^8.81 + 2*g1^6*g2^5*g3^2*t^8.81 + g1^6*g2*g3^3*t^8.81 + 5*g1^6*g2^2*g3^3*t^8.81 + 3*g1^6*g2^3*g3^3*t^8.81 + 5*g1^6*g2^4*g3^3*t^8.81 + g1^6*g2^5*g3^3*t^8.81 + 2*g1^6*g2*g3^4*t^8.81 + g1^6*g2^2*g3^4*t^8.81 + 5*g1^6*g2^3*g3^4*t^8.81 + 3*g1^6*g2^4*g3^4*t^8.81 + g1^6*g2^5*g3^4*t^8.81 + 2*g1^6*g2^2*g3^5*t^8.81 + g1^6*g2^3*g3^5*t^8.81 + g1^6*g2^4*g3^5*t^8.81 - t^4.5/y - t^6./y - (g1^3*g2^2*g3*t^6.65)/y - (g1^3*g2*g3^2*t^6.65)/y + (g1^6*g2^3*g3^3*t^7.31)/y + t^7.5/y + (g1^3*g2^2*t^8.15)/y + (2*g1^3*g2*g3*t^8.15)/y + (g1^3*g2^3*g3*t^8.15)/y + (g1^3*g3^2*t^8.15)/y + (2*g1^3*g2^2*g3^2*t^8.15)/y + (g1^3*g2*g3^3*t^8.15)/y + t^8.35/(g1^3*g2*g3^2*y) + t^8.35/(g1^3*g2^2*g3*y) + (g1^6*g2^3*g3^2*t^8.81)/y - (g1^6*g2^4*g3^2*t^8.81)/y + (g1^6*g2^2*g3^3*t^8.81)/y - (g1^6*g2^3*g3^3*t^8.81)/y + (g1^6*g2^4*g3^3*t^8.81)/y - (g1^6*g2^2*g3^4*t^8.81)/y + (g1^6*g2^3*g3^4*t^8.81)/y - t^4.5*y - t^6.*y - g1^3*g2^2*g3*t^6.65*y - g1^3*g2*g3^2*t^6.65*y + g1^6*g2^3*g3^3*t^7.31*y + t^7.5*y + g1^3*g2^2*t^8.15*y + 2*g1^3*g2*g3*t^8.15*y + g1^3*g2^3*g3*t^8.15*y + g1^3*g3^2*t^8.15*y + 2*g1^3*g2^2*g3^2*t^8.15*y + g1^3*g2*g3^3*t^8.15*y + (t^8.35*y)/(g1^3*g2*g3^2) + (t^8.35*y)/(g1^3*g2^2*g3) + g1^6*g2^3*g3^2*t^8.81*y - g1^6*g2^4*g3^2*t^8.81*y + g1^6*g2^2*g3^3*t^8.81*y - g1^6*g2^3*g3^3*t^8.81*y + g1^6*g2^4*g3^3*t^8.81*y - g1^6*g2^2*g3^4*t^8.81*y + g1^6*g2^3*g3^4*t^8.81*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59069 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}M_{2}$ 0.9141 1.1016 0.8298 [X:[1.5, 1.5, 1.5, 1.5], M:[1.0, 1.0], q:[0.1667, 0.1667], qb:[0.3333, 0.3333], phi:[0.5]] 7*t^3. + 13*t^4.5 + 15*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail {a: 117/128, c: 141/128, X1: 3/2, X2: 3/2, X3: 3/2, X4: 3/2, M1: 1, M2: 1, q1: 1/6, q2: 1/6, qb1: 1/3, qb2: 1/3, phi1: 1/2}
59041 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.0052 1.2248 0.8207 [X:[1.4988, 1.4861, 1.5139, 1.5012], M:[0.7494, 0.7367], q:[0.246, 0.2587], qb:[0.2553, 0.2401], phi:[0.5]] t^2.21 + t^2.25 + t^2.96 + 3*t^3. + t^3.04 + t^3.71 + t^3.75 + t^4.42 + 3*t^4.46 + 6*t^4.5 + 2*t^4.54 + t^5.17 + 5*t^5.21 + t^5.24 + 5*t^5.25 + 2*t^5.29 + 2*t^5.92 + t^5.95 + t^5.96 + t^5.99 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
58749 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 0.9784 1.1912 0.8214 [X:[1.3748, 1.529, 1.471, 1.6252], M:[0.7207, 0.8748], q:[0.3112, 0.157], qb:[0.314, 0.2178], phi:[0.5]] t^2.16 + 2*t^2.62 + t^2.91 + t^3. + t^3.09 + t^3.38 + t^3.75 + t^4.04 + 2*t^4.12 + t^4.32 + 2*t^4.41 + t^4.5 + 2*t^4.59 + 2*t^4.79 + 3*t^4.88 + t^5.07 + t^5.16 + 5*t^5.25 + t^5.34 + 3*t^5.54 + t^5.62 + t^5.71 + t^5.83 + 2*t^5.91 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
58856 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 0.9412 1.1397 0.8258 [X:[1.4117, 1.5883, 1.4117, 1.5883], M:[0.8233, 1.0], q:[0.2844, 0.1078], qb:[0.3039, 0.3039], phi:[0.5]] t^2.47 + 2*t^2.74 + 2*t^3. + 2*t^3.26 + 6*t^4.24 + 2*t^4.5 + 4*t^4.76 + t^4.94 + t^5.03 + 2*t^5.21 + 5*t^5.47 + 6*t^5.74 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
58858 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.0081 1.2332 0.8174 [X:[1.4969, 1.4604, 1.5396, 1.5031], M:[0.7368, 0.7003, 0.9604], q:[0.2422, 0.2787], qb:[0.2609, 0.2181], phi:[0.5]] t^2.1 + t^2.21 + 2*t^2.88 + t^2.99 + t^3. + t^3.01 + t^3.59 + t^3.72 + t^4.2 + t^4.31 + 2*t^4.38 + t^4.42 + 2*t^4.49 + t^4.5 + 2*t^4.51 + 2*t^4.62 + 2*t^4.98 + 4*t^5.09 + t^5.1 + t^5.11 + t^5.2 + t^5.21 + 2*t^5.22 + t^5.29 + t^5.4 + t^5.69 + 3*t^5.76 + t^5.8 + t^5.82 + t^5.87 + t^5.88 + t^5.89 + t^5.93 + t^5.98 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47941 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ 0.9864 1.191 0.8281 [X:[1.4928, 1.5072, 1.4928, 1.5072], M:[0.725], q:[0.2631, 0.2487], qb:[0.2441, 0.2441], phi:[0.5]] t^2.175 + 2*t^2.978 + t^3. + 2*t^3.022 + 2*t^3.697 + t^3.782 + t^4.35 + 4*t^4.478 + t^4.5 + 4*t^4.522 + 2*t^5.153 + t^5.175 + 4*t^5.197 + t^5.282 + t^5.325 + 2*t^5.872 + 3*t^5.957 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail