Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58858 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.0081 1.2332 0.8174 [X:[1.4969, 1.4604, 1.5396, 1.5031], M:[0.7368, 0.7003, 0.9604], q:[0.2422, 0.2787], qb:[0.2609, 0.2181], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[3, 2, 1], [3, 1, 2], [0, -1, 0]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.1 + t^2.21 + 2*t^2.88 + t^2.99 + t^3. + t^3.01 + t^3.59 + t^3.72 + t^4.2 + t^4.31 + 2*t^4.38 + t^4.42 + 2*t^4.49 + t^4.5 + 2*t^4.51 + 2*t^4.62 + 2*t^4.98 + 4*t^5.09 + t^5.1 + t^5.11 + t^5.2 + t^5.21 + 2*t^5.22 + t^5.29 + t^5.4 + t^5.69 + 3*t^5.76 + t^5.8 + t^5.82 + t^5.87 + t^5.88 + t^5.89 + t^5.93 + t^5.98 - 3*t^6. + t^6.02 - t^6.11 - t^6.12 - t^6.13 + t^6.3 + t^6.41 + t^6.46 + 2*t^6.47 + 2*t^6.48 + t^6.52 + t^6.58 + 5*t^6.59 + 2*t^6.6 + 2*t^6.61 + t^6.63 + t^6.68 + 2*t^6.7 + 5*t^6.72 + t^6.73 - 2*t^6.78 + 2*t^6.83 + t^6.85 - 2*t^6.91 + t^7.01 + 2*t^7.08 + t^7.18 + 4*t^7.19 + t^7.2 + t^7.21 + 4*t^7.26 + 4*t^7.3 + 2*t^7.31 + 2*t^7.32 + 5*t^7.37 + 2*t^7.38 + 6*t^7.39 + t^7.41 + t^7.42 + 2*t^7.43 + t^7.44 + 2*t^7.48 + t^7.49 + 7*t^7.5 + t^7.51 + 2*t^7.52 + 2*t^7.61 + t^7.63 + t^7.79 + 3*t^7.86 + t^7.9 + t^7.92 - t^7.96 + 6*t^7.97 + t^7.98 + t^7.99 + t^8.01 + t^8.03 + 3*t^8.08 + t^8.09 + t^8.1 + t^8.12 + t^8.14 - t^8.18 + t^8.19 - 3*t^8.21 - t^8.22 + t^8.23 - t^8.28 - t^8.29 - t^8.3 - t^8.32 - t^8.33 - t^8.34 - t^8.35 - t^8.39 - 3*t^8.41 - 2*t^8.52 + t^8.56 + 2*t^8.57 + 2*t^8.58 + t^8.62 + 4*t^8.64 + t^8.67 + 4*t^8.68 + 5*t^8.69 + 2*t^8.7 + 2*t^8.71 + t^8.73 + t^8.75 + 4*t^8.76 + t^8.77 + t^8.78 + t^8.79 + 5*t^8.8 + 3*t^8.81 + 5*t^8.82 + t^8.83 + t^8.84 + t^8.86 + t^8.87 - 11*t^8.88 + 2*t^8.89 + t^8.9 + 2*t^8.91 + 5*t^8.93 + 2*t^8.94 + t^8.95 + t^8.97 + 3*t^8.98 - 8*t^8.99 - t^4.5/y - t^6./y - t^6.6/y - t^6.71/y + t^7.31/y - t^7.38/y + t^7.5/y + t^7.62/y + (2*t^7.98)/y + (3*t^8.09)/y + t^8.11/y + t^8.2/y + t^8.22/y + t^8.29/y + t^8.4/y + t^8.69/y - t^8.7/y + t^8.76/y + t^8.8/y - t^8.81/y + t^8.82/y + (2*t^8.87)/y - t^8.88/y + (2*t^8.89)/y - t^8.92/y + t^8.93/y - t^8.99/y - t^4.5*y - t^6.*y - t^6.6*y - t^6.71*y + t^7.31*y - t^7.38*y + t^7.5*y + t^7.62*y + 2*t^7.98*y + 3*t^8.09*y + t^8.11*y + t^8.2*y + t^8.22*y + t^8.29*y + t^8.4*y + t^8.69*y - t^8.7*y + t^8.76*y + t^8.8*y - t^8.81*y + t^8.82*y + 2*t^8.87*y - t^8.88*y + 2*t^8.89*y - t^8.92*y + t^8.93*y - t^8.99*y g1^3*g2*g3^2*t^2.1 + g1^3*g2^2*g3*t^2.21 + (2*t^2.88)/g2 + t^2.99/g3 + t^3. + g3*t^3.01 + g1^3*g2*g3*t^3.59 + g1^3*g2^2*g3^2*t^3.72 + g1^6*g2^2*g3^4*t^4.2 + g1^6*g2^3*g3^3*t^4.31 + (2*t^4.38)/g2 + g1^6*g2^4*g3^2*t^4.42 + (2*t^4.49)/g3 + t^4.5 + 2*g3*t^4.51 + 2*g2*t^4.62 + 2*g1^3*g3^2*t^4.98 + 4*g1^3*g2*g3*t^5.09 + g1^3*g2*g3^2*t^5.1 + g1^3*g2*g3^3*t^5.11 + g1^3*g2^2*t^5.2 + g1^3*g2^2*g3*t^5.21 + 2*g1^3*g2^2*g3^2*t^5.22 + t^5.29/(g1^3*g2^2*g3) + t^5.4/(g1^3*g2*g3^2) + g1^6*g2^2*g3^3*t^5.69 + (3*t^5.76)/g2^2 + g1^6*g2^3*g3^2*t^5.8 + g1^6*g2^3*g3^4*t^5.82 + t^5.87/(g2*g3) + t^5.88/g2 + (g3*t^5.89)/g2 + g1^6*g2^4*g3^3*t^5.93 + t^5.98/g3^2 - 3*t^6. + g3^2*t^6.02 - (g2*t^6.11)/g3 - g2*t^6.12 - g2*g3*t^6.13 + g1^9*g2^3*g3^6*t^6.3 + g1^9*g2^4*g3^5*t^6.41 + g1^3*t^6.46 + 2*g1^3*g3*t^6.47 + 2*g1^3*g3^2*t^6.48 + g1^9*g2^5*g3^4*t^6.52 + g1^3*g2*t^6.58 + 5*g1^3*g2*g3*t^6.59 + 2*g1^3*g2*g3^2*t^6.6 + 2*g1^3*g2*g3^3*t^6.61 + g1^9*g2^6*g3^3*t^6.63 + t^6.68/(g1^3*g2^3) + 2*g1^3*g2^2*t^6.7 + 5*g1^3*g2^2*g3^2*t^6.72 + g1^3*g2^2*g3^3*t^6.73 - (2*t^6.78)/(g1^3*g2^2*g3^2) + 2*g1^3*g2^3*g3*t^6.83 + g1^3*g2^3*g3^3*t^6.85 - (2*t^6.91)/(g1^3*g2*g3) + t^7.01/(g1^3*g3^3) + 2*g1^6*g2*g3^4*t^7.08 + g1^6*g2^2*g3^2*t^7.18 + 4*g1^6*g2^2*g3^3*t^7.19 + g1^6*g2^2*g3^4*t^7.2 + g1^6*g2^2*g3^5*t^7.21 + (4*t^7.26)/g2^2 + 4*g1^6*g2^3*g3^2*t^7.3 + 2*g1^6*g2^3*g3^3*t^7.31 + 2*g1^6*g2^3*g3^4*t^7.32 + (5*t^7.37)/(g2*g3) + (2*t^7.38)/g2 + (6*g3*t^7.39)/g2 + g1^6*g2^4*g3*t^7.41 + g1^6*g2^4*g3^2*t^7.42 + 2*g1^6*g2^4*g3^3*t^7.43 + g1^6*g2^4*g3^4*t^7.44 + (2*t^7.48)/g3^2 + t^7.49/g3 + 7*t^7.5 + g3*t^7.51 + 2*g3^2*t^7.52 + (2*g2*t^7.61)/g3 + g2*g3*t^7.63 + g1^9*g2^3*g3^5*t^7.79 + (3*g1^3*g3^2*t^7.86)/g2 + g1^9*g2^4*g3^4*t^7.9 + g1^9*g2^4*g3^6*t^7.92 - g1^3*t^7.96 + 6*g1^3*g3*t^7.97 + g1^3*g3^2*t^7.98 + g1^3*g3^3*t^7.99 + g1^9*g2^5*g3^3*t^8.01 + g1^9*g2^5*g3^5*t^8.03 + 3*g1^3*g2*t^8.08 + g1^3*g2*g3*t^8.09 + g1^3*g2*g3^2*t^8.1 + g1^3*g2*g3^4*t^8.12 + g1^9*g2^6*g3^4*t^8.14 - t^8.18/(g1^3*g2^3) + (g1^3*g2^2*t^8.19)/g3 - 3*g1^3*g2^2*g3*t^8.21 - g1^3*g2^2*g3^2*t^8.22 + g1^3*g2^2*g3^3*t^8.23 - t^8.28/(g1^3*g2^2*g3^2) - t^8.29/(g1^3*g2^2*g3) - t^8.3/(g1^3*g2^2) - g1^3*g2^3*t^8.32 - g1^3*g2^3*g3*t^8.33 - g1^3*g2^3*g3^2*t^8.34 - g1^3*g2^3*g3^3*t^8.35 - t^8.39/(g1^3*g2*g3^3) - t^8.4/(g1^3*g2*g3^2) + g1^12*g2^4*g3^8*t^8.4 - (3*t^8.41)/(g1^3*g2*g3) - t^8.51/(g1^3*g3^3) + g1^12*g2^5*g3^7*t^8.51 - (2*t^8.52)/(g1^3*g3^2) + g1^6*g2*g3^2*t^8.56 + 2*g1^6*g2*g3^3*t^8.57 + 2*g1^6*g2*g3^4*t^8.58 + g1^12*g2^6*g3^6*t^8.62 + (4*t^8.64)/g2^3 + g1^6*g2^2*g3*t^8.67 + 4*g1^6*g2^2*g3^2*t^8.68 + 5*g1^6*g2^2*g3^3*t^8.69 + 2*g1^6*g2^2*g3^4*t^8.7 + 2*g1^6*g2^2*g3^5*t^8.71 + g1^12*g2^7*g3^5*t^8.73 + t^8.75/(g2^2*g3) + (4*t^8.76)/g2^2 + (g3*t^8.77)/g2^2 + (g3^2*t^8.78)/g2^2 + g1^6*g2^3*g3*t^8.79 + 5*g1^6*g2^3*g3^2*t^8.8 + 3*g1^6*g2^3*g3^3*t^8.81 + 5*g1^6*g2^3*g3^4*t^8.82 + g1^6*g2^3*g3^5*t^8.83 + g1^12*g2^8*g3^4*t^8.84 + t^8.86/(g2*g3^2) + t^8.87/(g2*g3) - (11*t^8.88)/g2 + (2*g3*t^8.89)/g2 + (g3^2*t^8.9)/g2 + 2*g1^6*g2^4*g3*t^8.91 + 5*g1^6*g2^4*g3^3*t^8.93 + 2*g1^6*g2^4*g3^4*t^8.94 + g1^6*g2^4*g3^5*t^8.95 + t^8.97/g3^3 + (3*t^8.98)/g3^2 - (8*t^8.99)/g3 - t^4.5/y - t^6./y - (g1^3*g2*g3^2*t^6.6)/y - (g1^3*g2^2*g3*t^6.71)/y + (g1^6*g2^3*g3^3*t^7.31)/y - t^7.38/(g2*y) + t^7.5/y + (g2*t^7.62)/y + (2*g1^3*g3^2*t^7.98)/y + (3*g1^3*g2*g3*t^8.09)/y + (g1^3*g2*g3^3*t^8.11)/y + (g1^3*g2^2*t^8.2)/y + (g1^3*g2^2*g3^2*t^8.22)/y + t^8.29/(g1^3*g2^2*g3*y) + t^8.4/(g1^3*g2*g3^2*y) + (g1^6*g2^2*g3^3*t^8.69)/y - (g1^6*g2^2*g3^4*t^8.7)/y + t^8.76/(g2^2*y) + (g1^6*g2^3*g3^2*t^8.8)/y - (g1^6*g2^3*g3^3*t^8.81)/y + (g1^6*g2^3*g3^4*t^8.82)/y + (2*t^8.87)/(g2*g3*y) - t^8.88/(g2*y) + (2*g3*t^8.89)/(g2*y) - (g1^6*g2^4*g3^2*t^8.92)/y + (g1^6*g2^4*g3^3*t^8.93)/y - t^8.99/(g3*y) - t^4.5*y - t^6.*y - g1^3*g2*g3^2*t^6.6*y - g1^3*g2^2*g3*t^6.71*y + g1^6*g2^3*g3^3*t^7.31*y - (t^7.38*y)/g2 + t^7.5*y + g2*t^7.62*y + 2*g1^3*g3^2*t^7.98*y + 3*g1^3*g2*g3*t^8.09*y + g1^3*g2*g3^3*t^8.11*y + g1^3*g2^2*t^8.2*y + g1^3*g2^2*g3^2*t^8.22*y + (t^8.29*y)/(g1^3*g2^2*g3) + (t^8.4*y)/(g1^3*g2*g3^2) + g1^6*g2^2*g3^3*t^8.69*y - g1^6*g2^2*g3^4*t^8.7*y + (t^8.76*y)/g2^2 + g1^6*g2^3*g3^2*t^8.8*y - g1^6*g2^3*g3^3*t^8.81*y + g1^6*g2^3*g3^4*t^8.82*y + (2*t^8.87*y)/(g2*g3) - (t^8.88*y)/g2 + (2*g3*t^8.89*y)/g2 - g1^6*g2^4*g3^2*t^8.92*y + g1^6*g2^4*g3^3*t^8.93*y - (t^8.99*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61265 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.0069 1.2288 0.8194 [X:[1.5111, 1.4612, 1.5388, 1.4889], M:[0.7694, 0.7195, 0.9612], q:[0.2269, 0.2768], qb:[0.262, 0.2343], phi:[0.5]] t^2.16 + t^2.31 + 2*t^2.88 + t^2.97 + t^3. + t^3.03 + t^3.69 + t^3.77 + t^4.32 + 2*t^4.38 + 3*t^4.47 + t^4.5 + 2*t^4.53 + 3*t^4.62 + 2*t^5.04 + t^5.13 + t^5.16 + 5*t^5.19 + 2*t^5.27 + t^5.31 + 2*t^5.34 + 3*t^5.77 + 2*t^5.85 + t^5.88 + t^5.92 + 2*t^5.93 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57747 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 1.0062 1.2289 0.8188 [X:[1.5, 1.5, 1.5, 1.5], M:[0.7183, 0.7183], q:[0.2606, 0.2606], qb:[0.2394, 0.2394], phi:[0.5]] 2*t^2.15 + 5*t^3. + 2*t^3.65 + 3*t^4.31 + 9*t^4.5 + 12*t^5.15 + 2*t^5.35 + 4*t^5.81 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail