Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58856 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 0.9412 1.1397 0.8258 [X:[1.4117, 1.5883, 1.4117, 1.5883], M:[0.8233, 1.0], q:[0.2844, 0.1078], qb:[0.3039, 0.3039], phi:[0.5]] [X:[[0, -3], [-3, 0], [3, 0], [0, 3]], M:[[3, -3], [0, 0]], q:[[-2, 2], [1, -1]], qb:[[2, 1], [-1, -2]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ 0 t^2.47 + 2*t^2.74 + 2*t^3. + 2*t^3.26 + 6*t^4.24 + 2*t^4.5 + 4*t^4.76 + t^4.94 + t^5.03 + 2*t^5.21 + 5*t^5.47 + 6*t^5.74 - 2*t^6.26 + 2*t^6.53 + 6*t^6.71 + 10*t^6.97 + t^7.06 + 14*t^7.24 + t^7.41 + 15*t^7.5 + 2*t^7.68 + 2*t^7.76 + 5*t^7.94 + 7*t^8.03 + 10*t^8.21 - 2*t^8.29 + 17*t^8.47 - t^8.56 - 6*t^8.74 - t^4.5/y - t^6./y - t^6.97/y + t^7.5/y + t^8.03/y + (2*t^8.21)/y + (2*t^8.47)/y + (2*t^8.74)/y - t^4.5*y - t^6.*y - t^6.97*y + t^7.5*y + t^8.03*y + 2*t^8.21*y + 2*t^8.47*y + 2*t^8.74*y (g1^3*t^2.47)/g2^3 + g1^3*t^2.74 + t^2.74/g2^3 + 2*t^3. + t^3.26/g1^3 + g2^3*t^3.26 + 3*g1^3*t^4.24 + (3*t^4.24)/g2^3 + 2*t^4.5 + (2*t^4.76)/g1^3 + 2*g2^3*t^4.76 + (g1^6*t^4.94)/g2^6 + (g2^3*t^5.03)/g1^3 + (g1^3*t^5.21)/g2^6 + (g1^6*t^5.21)/g2^3 + g1^6*t^5.47 + t^5.47/g2^6 + (3*g1^3*t^5.47)/g2^3 + 3*g1^3*t^5.74 + (3*t^5.74)/g2^3 - t^6.26/g1^3 - g2^3*t^6.26 + t^6.53/g1^6 + g2^6*t^6.53 + (3*g1^3*t^6.71)/g2^6 + (3*g1^6*t^6.71)/g2^3 + 3*g1^6*t^6.97 + (3*t^6.97)/g2^6 + (4*g1^3*t^6.97)/g2^3 + (g2^6*t^7.06)/g1^6 + 6*g1^3*t^7.24 + t^7.24/(g1^3*g2^6) + (6*t^7.24)/g2^3 + g1^6*g2^3*t^7.24 + (g1^9*t^7.41)/g2^9 + 7*t^7.5 + (4*t^7.5)/(g1^3*g2^3) + 4*g1^3*g2^3*t^7.5 + (g1^6*t^7.68)/g2^9 + (g1^9*t^7.68)/g2^6 + t^7.76/g1^3 + g2^3*t^7.76 + (g1^3*t^7.94)/g2^9 + (3*g1^6*t^7.94)/g2^6 + (g1^9*t^7.94)/g2^3 + (2*t^8.03)/g1^6 + (3*g2^3*t^8.03)/g1^3 + 2*g2^6*t^8.03 + g1^9*t^8.21 + t^8.21/g2^9 + (4*g1^3*t^8.21)/g2^6 + (4*g1^6*t^8.21)/g2^3 - (g2^3*t^8.29)/g1^6 - (g2^6*t^8.29)/g1^3 + 6*g1^6*t^8.47 + (6*t^8.47)/g2^6 + (5*g1^3*t^8.47)/g2^3 - (g2^6*t^8.56)/g1^6 - 2*g1^3*t^8.74 - t^8.74/(g1^3*g2^6) - (2*t^8.74)/g2^3 - g1^6*g2^3*t^8.74 - t^4.5/y - t^6./y - (g1^3*t^6.97)/(g2^3*y) + t^7.5/y + (g2^3*t^8.03)/(g1^3*y) + (g1^3*t^8.21)/(g2^6*y) + (g1^6*t^8.21)/(g2^3*y) + (2*g1^3*t^8.47)/(g2^3*y) + (g1^3*t^8.74)/y + t^8.74/(g2^3*y) - t^4.5*y - t^6.*y - (g1^3*t^6.97*y)/g2^3 + t^7.5*y + (g2^3*t^8.03*y)/g1^3 + (g1^3*t^8.21*y)/g2^6 + (g1^6*t^8.21*y)/g2^3 + (2*g1^3*t^8.47*y)/g2^3 + g1^3*t^8.74*y + (t^8.74*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57747 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 1.0062 1.2289 0.8188 [X:[1.5, 1.5, 1.5, 1.5], M:[0.7183, 0.7183], q:[0.2606, 0.2606], qb:[0.2394, 0.2394], phi:[0.5]] 2*t^2.15 + 5*t^3. + 2*t^3.65 + 3*t^4.31 + 9*t^4.5 + 12*t^5.15 + 2*t^5.35 + 4*t^5.81 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail