Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47941 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ 0.9864 1.191 0.8281 [X:[1.4928, 1.5072, 1.4928, 1.5072], M:[0.725], q:[0.2631, 0.2487], qb:[0.2441, 0.2441], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[3, 2, 1]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ -2 t^2.175 + 2*t^2.978 + t^3. + 2*t^3.022 + 2*t^3.697 + t^3.782 + t^4.35 + 4*t^4.478 + t^4.5 + 4*t^4.522 + 2*t^5.153 + t^5.175 + 4*t^5.197 + t^5.282 + t^5.325 + 2*t^5.872 + 3*t^5.957 - 2*t^6. + 2*t^6.043 + t^6.525 + 4*t^6.653 + 3*t^6.675 + 8*t^6.697 + 2*t^6.718 + t^6.739 + 2*t^6.76 + t^6.782 - 2*t^6.803 + t^6.868 + 2*t^7.328 + t^7.35 + 4*t^7.372 + 3*t^7.393 + 8*t^7.457 + 4*t^7.478 + 12*t^7.5 + 2*t^7.522 + 7*t^7.543 + t^7.564 + 2*t^8.047 + 3*t^8.132 + 2*t^8.175 - 2*t^8.197 + 6*t^8.218 - t^8.239 + 2*t^8.26 - t^8.325 - 2*t^8.347 - t^8.368 + t^8.7 + 4*t^8.828 + 3*t^8.85 + 8*t^8.872 + 6*t^8.893 + t^8.914 + 4*t^8.935 + 8*t^8.957 - 10*t^8.978 - t^4.5/y - t^6./y - t^6.675/y + t^7.5/y + (2*t^8.153)/y + (2*t^8.197)/y + t^8.325/y - t^8.85/y + (2*t^8.872)/y + (2*t^8.957)/y - (2*t^8.978)/y - t^4.5*y - t^6.*y - t^6.675*y + t^7.5*y + 2*t^8.153*y + 2*t^8.197*y + t^8.325*y - t^8.85*y + 2*t^8.872*y + 2*t^8.957*y - 2*t^8.978*y g1^3*g2^2*g3*t^2.175 + g2*t^2.978 + t^2.978/g3 + t^3. + t^3.022/g2 + g3*t^3.022 + g1^3*g2*g3*t^3.697 + g1^3*g2^2*g3^2*t^3.697 + t^3.782/(g1^3*g2*g3^2) + g1^6*g2^4*g3^2*t^4.35 + 2*g2*t^4.478 + (2*t^4.478)/g3 + t^4.5 + (2*t^4.522)/g2 + 2*g3*t^4.522 + g1^3*g2^2*t^5.153 + g1^3*g2^3*g3*t^5.153 + g1^3*g2^2*g3*t^5.175 + 2*g1^3*g2*g3*t^5.197 + 2*g1^3*g2^2*g3^2*t^5.197 + t^5.282/(g1^3*g2*g3^2) + t^5.325/(g1^3*g2^2*g3) + g1^6*g2^3*g3^2*t^5.872 + g1^6*g2^4*g3^3*t^5.872 + g2^2*t^5.957 + t^5.957/g3^2 + (g2*t^5.957)/g3 - 2*t^6. + t^6.043/g2^2 + g3^2*t^6.043 + g1^9*g2^6*g3^3*t^6.525 + 2*g1^3*g2^2*t^6.653 + 2*g1^3*g2^3*g3*t^6.653 + g1^3*g2*t^6.675 + g1^3*g2^2*g3*t^6.675 + g1^3*g2^3*g3^2*t^6.675 + g1^3*t^6.697 + 3*g1^3*g2*g3*t^6.697 + 3*g1^3*g2^2*g3^2*t^6.697 + g1^3*g2^3*g3^3*t^6.697 + g1^3*g3*t^6.718 + g1^3*g2^2*g3^3*t^6.718 + t^6.739/(g1^3*g3^3) + t^6.76/(g1^3*g2*g3^3) + t^6.76/(g1^3*g3^2) + t^6.782/(g1^3*g2*g3^2) - t^6.803/(g1^3*g2^2*g3^2) - t^6.803/(g1^3*g2*g3) + t^6.868/(g1^3*g2^3) + g1^6*g2^4*g3*t^7.328 + g1^6*g2^5*g3^2*t^7.328 + g1^6*g2^4*g3^2*t^7.35 + 2*g1^6*g2^3*g3^2*t^7.372 + 2*g1^6*g2^4*g3^3*t^7.372 + g1^6*g2^2*g3^2*t^7.393 + g1^6*g2^3*g3^3*t^7.393 + g1^6*g2^4*g3^4*t^7.393 + 2*g2^2*t^7.457 + (2*t^7.457)/g3^2 + (4*g2*t^7.457)/g3 + 2*g2*t^7.478 + (2*t^7.478)/g3 + 6*t^7.5 + (3*t^7.5)/(g2*g3) + 3*g2*g3*t^7.5 + t^7.522/g2 + g3*t^7.522 + (2*t^7.543)/g2^2 + (3*g3*t^7.543)/g2 + 2*g3^2*t^7.543 + t^7.564/(g1^6*g2^2*g3^4) + g1^9*g2^5*g3^3*t^8.047 + g1^9*g2^6*g3^4*t^8.047 + g1^3*g2^3*t^8.132 + (g1^3*g2^2*t^8.132)/g3 + g1^3*g2^4*g3*t^8.132 + g1^3*g2*t^8.175 + g1^3*g2^3*g3^2*t^8.175 - g1^3*t^8.197 - g1^3*g2^3*g3^3*t^8.197 + 2*g1^3*g3*t^8.218 + 2*g1^3*g2*g3^2*t^8.218 + 2*g1^3*g2^2*g3^3*t^8.218 - t^8.239/(g1^3*g3^3) + t^8.26/(g1^3*g2*g3^3) + t^8.26/(g1^3*g3^2) - t^8.325/(g1^3*g2^2*g3) - t^8.347/(g1^3*g2^2) - t^8.347/(g1^3*g2^3*g3) - t^8.368/(g1^3*g2^3) + g1^12*g2^8*g3^4*t^8.7 + 2*g1^6*g2^4*g3*t^8.828 + 2*g1^6*g2^5*g3^2*t^8.828 + g1^6*g2^3*g3*t^8.85 + g1^6*g2^4*g3^2*t^8.85 + g1^6*g2^5*g3^3*t^8.85 + g1^6*g2^2*g3*t^8.872 + 3*g1^6*g2^3*g3^2*t^8.872 + 3*g1^6*g2^4*g3^3*t^8.872 + g1^6*g2^5*g3^4*t^8.872 + 2*g1^6*g2^2*g3^2*t^8.893 + 2*g1^6*g2^3*g3^3*t^8.893 + 2*g1^6*g2^4*g3^4*t^8.893 + (g2^2*t^8.914)/g3^2 + g2^3*t^8.935 + t^8.935/g3^3 + (g2*t^8.935)/g3^2 + (g2^2*t^8.935)/g3 + 3*g2^2*t^8.957 + (3*t^8.957)/g3^2 + (2*g2*t^8.957)/g3 - 5*g2*t^8.978 - (5*t^8.978)/g3 - t^4.5/y - t^6./y - (g1^3*g2^2*g3*t^6.675)/y + t^7.5/y + (g1^3*g2^2*t^8.153)/y + (g1^3*g2^3*g3*t^8.153)/y + (g1^3*g2*g3*t^8.197)/y + (g1^3*g2^2*g3^2*t^8.197)/y + t^8.325/(g1^3*g2^2*g3*y) - (g1^6*g2^4*g3^2*t^8.85)/y + (g1^6*g2^3*g3^2*t^8.872)/y + (g1^6*g2^4*g3^3*t^8.872)/y + (2*g2*t^8.957)/(g3*y) - (g2*t^8.978)/y - t^8.978/(g3*y) - t^4.5*y - t^6.*y - g1^3*g2^2*g3*t^6.675*y + t^7.5*y + g1^3*g2^2*t^8.153*y + g1^3*g2^3*g3*t^8.153*y + g1^3*g2*g3*t^8.197*y + g1^3*g2^2*g3^2*t^8.197*y + (t^8.325*y)/(g1^3*g2^2*g3) - g1^6*g2^4*g3^2*t^8.85*y + g1^6*g2^3*g3^2*t^8.872*y + g1^6*g2^4*g3^3*t^8.872*y + (2*g2*t^8.957*y)/g3 - g2*t^8.978*y - (t^8.978*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57742 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{1}q_{2}^{2}$ 0.9862 1.1906 0.8284 [X:[1.5, 1.5, 1.5, 1.5], M:[0.7307], q:[0.2564, 0.2564], qb:[0.2436, 0.2436], phi:[0.5]] t^2.19 + 5*t^3. + 2*t^3.69 + t^3.81 + t^4.38 + 9*t^4.5 + 7*t^5.19 + 2*t^5.31 + 2*t^5.88 + 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57683 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 0.9587 1.1535 0.8311 [X:[1.6173, 1.4795, 1.5205, 1.3827], M:[0.8827], q:[0.1598, 0.2976], qb:[0.2228, 0.3197], phi:[0.5]] 2*t^2.65 + t^2.94 + t^3. + t^3.06 + t^3.35 + t^3.77 + t^3.8 + t^4.09 + 2*t^4.15 + 2*t^4.44 + t^4.5 + 2*t^4.56 + 3*t^4.85 + t^5.27 + 4*t^5.3 + 2*t^5.59 + t^5.65 + t^5.71 + t^5.88 + t^5.94 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57723 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0.9859 1.1893 0.829 [X:[1.5, 1.5093, 1.4907, 1.5], M:[0.7454], q:[0.2546, 0.2454], qb:[0.2454, 0.2546], phi:[0.5]] t^2.24 + t^2.97 + 3*t^3. + t^3.03 + 2*t^3.74 + t^3.76 + 3*t^4.47 + 5*t^4.5 + 2*t^4.53 + t^5.21 + 5*t^5.24 + 3*t^5.26 + t^5.94 + 2*t^5.97 + t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57692 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ 0.9277 1.1152 0.8319 [X:[1.5657, 1.4343, 1.5657, 1.4343], M:[1.0], q:[0.1228, 0.2543], qb:[0.3114, 0.3114], phi:[0.5]] 2*t^2.8 + 2*t^3. + 2*t^3.2 + t^3.39 + 6*t^4.3 + 2*t^4.5 + 4*t^4.7 + t^4.89 + 3*t^5.61 + 4*t^5.8 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57747 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 1.0062 1.2289 0.8188 [X:[1.5, 1.5, 1.5, 1.5], M:[0.7183, 0.7183], q:[0.2606, 0.2606], qb:[0.2394, 0.2394], phi:[0.5]] 2*t^2.15 + 5*t^3. + 2*t^3.65 + 3*t^4.31 + 9*t^4.5 + 12*t^5.15 + 2*t^5.35 + 4*t^5.81 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57746 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.0052 1.2251 0.8205 [X:[1.5, 1.5176, 1.4824, 1.5], M:[0.7412, 0.7412], q:[0.2588, 0.2412], qb:[0.2412, 0.2588], phi:[0.5]] 2*t^2.22 + t^2.95 + 3*t^3. + t^3.05 + 2*t^3.72 + 5*t^4.45 + 5*t^4.5 + 2*t^4.55 + 2*t^5.17 + 8*t^5.22 + 4*t^5.28 + t^5.89 + 4*t^5.95 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
57730 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ 0.9863 1.1908 0.8283 [X:[1.4926, 1.5, 1.5, 1.5074], M:[0.7278], q:[0.2599, 0.2525], qb:[0.2475, 0.2401], phi:[0.5]] t^2.18 + t^2.98 + 3*t^3. + t^3.02 + t^3.68 + t^3.71 + t^3.79 + t^4.37 + 2*t^4.48 + 5*t^4.5 + 2*t^4.52 + t^5.16 + 4*t^5.18 + 2*t^5.21 + t^5.29 + t^5.32 + t^5.87 + t^5.89 + t^5.96 + t^5.98 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47877 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ 0.9668 1.1543 0.8376 [X:[1.5, 1.5, 1.5, 1.5], q:[0.25, 0.25], qb:[0.25, 0.25], phi:[0.5]] 5*t^3. + 4*t^3.75 + 9*t^4.5 + 4*t^5.25 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail {a: 495/512, c: 591/512, X1: 3/2, X2: 3/2, X3: 3/2, X4: 3/2, q1: 1/4, q2: 1/4, qb1: 1/4, qb2: 1/4, phi1: 1/2}