Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57743 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.476 | 1.6894 | 0.8737 | [X:[1.3247], M:[0.9766, 0.987, 0.6738], q:[0.5109, 0.4761], qb:[0.5125, 0.4746], phi:[0.3377]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [0, 0, 0, 3], [-1, -1, 0, 1]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}M_{3}X_{1}$ | -3 | t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.86 + 2*t^3.97 + t^4.04 + t^4.08 + t^4.87 + t^4.88 + t^4.95 + 3*t^4.98 + 2*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 2*t^5.81 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.91 + 3*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. + t^6.06 - t^6.11 + 2*t^6.41 + 2*t^6.52 + t^6.72 + t^6.79 + 2*t^6.82 + 3*t^6.83 + t^6.89 + 2*t^6.9 - t^6.91 + 6*t^6.93 + t^6.94 + t^6.97 + 3*t^7. + 2*t^7.04 + t^7.05 - t^7.13 + t^7.31 + t^7.32 + 2*t^7.42 + 2*t^7.53 + t^7.64 + t^7.65 + 3*t^7.73 + t^7.8 + t^7.81 + 5*t^7.83 + 4*t^7.84 + t^7.88 + 2*t^7.91 + t^7.93 + 6*t^7.94 + 6*t^7.95 + t^7.96 + t^8.01 - 3*t^8.02 - t^8.03 + 2*t^8.05 + 2*t^8.06 + t^8.09 - t^8.13 - 2*t^8.14 + t^8.17 + 2*t^8.25 + t^8.35 + 6*t^8.36 + t^8.37 - t^8.44 - t^8.45 + t^8.46 + 4*t^8.47 + t^8.48 - 3*t^8.55 + t^8.63 - t^8.65 + t^8.66 + t^8.67 + t^8.71 + 3*t^8.74 + t^8.76 + 3*t^8.77 + 2*t^8.78 + t^8.79 + 2*t^8.82 + 2*t^8.84 + t^8.85 + t^8.86 + 2*t^8.87 + 4*t^8.88 + 3*t^8.89 + t^8.9 + 2*t^8.92 - 3*t^8.93 + 4*t^8.95 - 3*t^8.96 - 5*t^8.97 + t^8.99 - t^4.01/y - t^5.03/y - t^6.03/y - t^6.86/y - t^6.94/y - (2*t^6.97)/y - t^6.98/y - t^7.05/y + t^7.87/y - t^7.88/y + t^7.95/y - t^7.96/y + t^7.98/y - t^8.06/y + t^8.78/y + (2*t^8.81)/y + t^8.82/y + t^8.89/y + t^8.9/y + (2*t^8.92)/y + t^8.93/y - t^8.96/y - t^4.01*y - t^5.03*y - t^6.03*y - t^6.86*y - t^6.94*y - 2*t^6.97*y - t^6.98*y - t^7.05*y + t^7.87*y - t^7.88*y + t^7.95*y - t^7.96*y + t^7.98*y - t^8.06*y + t^8.78*y + 2*t^8.81*y + t^8.82*y + t^8.89*y + t^8.9*y + 2*t^8.92*y + t^8.93*y - t^8.96*y | (g4*t^2.02)/(g1*g2) + g1*g3*t^2.85 + (g1*g3*t^2.93)/g4^6 + g4^3*t^2.96 + (g4^6*t^2.96)/(g1*g2) + g1*g2*t^2.97 + (g1*g3*t^3.86)/g4 + g4^2*t^3.97 + (g4^5*t^3.97)/(g1*g2) + (g4^2*t^4.04)/(g1^2*g2^2) + (g4^5*t^4.08)/(g1*g3) + (g3*g4*t^4.87)/g2 + (g1*g3*t^4.88)/g4^2 + (g3*t^4.95)/(g2*g4^5) + (2*g4^4*t^4.98)/(g1*g2) + (g4^7*t^4.98)/(g1^2*g2^2) + (g1*g2*t^4.99)/g4^2 + g4*t^4.99 + (g4^4*t^5.1)/(g1*g3) + (g2*g3^2*t^5.4)/g4 + (g1*g4^5*t^5.4)/(g2*g3) + (g2^2*g3*t^5.51)/g4 + (g4^11*t^5.51)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.7 + (g1^2*g3^2*t^5.78)/g4^6 + g1*g3*g4^3*t^5.81 + (g3*g4^6*t^5.81)/g2 + g1^2*g2*g3*t^5.82 + (g1^2*g3^2*t^5.86)/g4^12 + (g3*t^5.89)/g2 + (g1*g3*t^5.89)/g4^3 + (g4^12*t^5.91)/(g1^2*g2^2) + 2*g4^6*t^5.92 + (g4^9*t^5.92)/(g1*g2) + g1^2*g2^2*t^5.93 + g1*g2*g4^3*t^5.93 + (g4^6*t^5.99)/(g1^2*g2^2) - 4*t^6. + (g4^3*t^6.)/(g1*g2) + (g4^3*t^6.06)/(g1^3*g2^3) - (g2*t^6.11)/g3 + (g2*g3^2*t^6.41)/g4^2 + (g1*g4^4*t^6.41)/(g2*g3) + (g2^2*g3*t^6.52)/g4^2 + (g4^10*t^6.52)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.72)/g4 + (g1^2*g3^2*t^6.79)/g4^7 + (2*g3*g4^5*t^6.82)/g2 + (g1^2*g2*g3*t^6.83)/g4 + 2*g1*g3*g4^2*t^6.83 + (g3*g4^2*t^6.89)/(g1*g2^2) + (g1*g3*t^6.9)/g4^4 + (g3*t^6.9)/(g2*g4) - (g1^2*g2*g3*t^6.91)/g4^7 + 3*g4^5*t^6.93 + (2*g4^8*t^6.93)/(g1*g2) + (g4^11*t^6.93)/(g1^2*g2^2) + g1*g2*g4^2*t^6.94 + (g3*t^6.97)/(g1*g2^2*g4^4) + (2*g4^5*t^7.)/(g1^2*g2^2) + (g4^8*t^7.)/(g1^3*g2^3) - t^7.01/g4 + (g4^2*t^7.01)/(g1*g2) + (g4^8*t^7.04)/(g1*g3) + (g4^11*t^7.04)/(g1^2*g2*g3) + (g2*g4^5*t^7.05)/g3 - (g2*t^7.13)/(g3*g4) + (g3^3*t^7.31)/g4^3 + (g1^3*t^7.32)/g4^3 + (g3^2*t^7.42)/g1 + (g2*g3^2*t^7.42)/g4^3 - (g1*g2^2*g3^2*t^7.43)/g4^6 + (g1*g4^3*t^7.43)/(g2*g3) + (g4^9*t^7.53)/(g1*g2^2*g3^2) + (g4^12*t^7.53)/(g1^2*g2^3*g3^2) + (g2^2*g3*t^7.54)/g4^3 - (g4^6*t^7.54)/(g2*g3^2) + (g4^15*t^7.64)/(g1^3*g2^3*g3^3) + (g2^3*t^7.65)/g4^3 + (2*g1^2*g3^2*t^7.73)/g4^2 + (g1*g3^2*g4*t^7.73)/g2 + (g1*g3^2*t^7.8)/(g2*g4^5) + (g1^2*g3^2*t^7.81)/g4^8 + (4*g3*g4^4*t^7.83)/g2 + (g3*g4^7*t^7.83)/(g1*g2^2) + (2*g1^2*g2*g3*t^7.84)/g4^2 + 2*g1*g3*g4*t^7.84 + (g1*g3^2*t^7.88)/(g2*g4^11) + (g3*t^7.91)/(g2*g4^2) + (g3*g4*t^7.91)/(g1*g2^2) + (g4^13*t^7.93)/(g1^3*g2^3) + (3*g4^7*t^7.94)/(g1*g2) + (3*g4^10*t^7.94)/(g1^2*g2^2) + g1*g2*g4*t^7.95 + 5*g4^4*t^7.95 + (g1^2*g2^2*t^7.96)/g4^2 + (g4^7*t^8.01)/(g1^3*g2^3) - (4*g4*t^8.02)/(g1*g2) + (g4^4*t^8.02)/(g1^2*g2^2) - t^8.03/g4^2 + (2*g4^10*t^8.05)/(g1^2*g2*g3) + (g2*g4^4*t^8.06)/g3 + (g4^7*t^8.06)/(g1*g3) + (g4^4*t^8.09)/(g1^4*g2^4) - (g4^4*t^8.13)/(g1^2*g2*g3) - (g2*t^8.14)/(g3*g4^2) - (g4*t^8.14)/(g1*g3) + (g4^10*t^8.17)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.25)/g4 + (g1^2*g4^5*t^8.25)/g2 + (g3^2*g4^5*t^8.35)/g1 + (2*g1*g2^2*g3^2*t^8.36)/g4 + g2*g3^2*g4^2*t^8.36 + (g1*g4^8*t^8.36)/(g2*g3) + (2*g4^11*t^8.36)/(g2^2*g3) + (g1^2*g4^5*t^8.37)/g3 - (g1*g2^2*g3^2*t^8.44)/g4^7 - (g1^2*t^8.45)/(g3*g4) + (g4^17*t^8.46)/(g1^2*g2^3*g3^2) + g2^2*g3*g4^2*t^8.47 + (g2*g3*g4^5*t^8.47)/g1 + (g4^11*t^8.47)/(g2*g3^2) + (g4^14*t^8.47)/(g1*g2^2*g3^2) + (g1*g2^3*g3*t^8.48)/g4 - (g2*g3*t^8.55)/(g1*g4) - (2*g4^5*t^8.55)/(g2*g3^2) + g1^3*g3^3*t^8.56 - (g1*g2^3*g3*t^8.56)/g4^7 + (g1^3*g3^3*t^8.63)/g4^6 - (g4^11*t^8.65)/(g1^2*g2^2*g3^3) - (g2^2*t^8.66)/(g1*g4) + g1^2*g3^2*g4^3*t^8.66 + (g1*g3^2*g4^6*t^8.66)/g2 + g1^3*g2*g3^2*t^8.67 + (g1^3*g3^3*t^8.71)/g4^12 + (g1*g3^2*t^8.74)/g2 + (2*g1^2*g3^2*t^8.74)/g4^3 + (g3*g4^12*t^8.76)/(g1*g2^2) + 2*g1*g3*g4^6*t^8.77 + (g3*g4^9*t^8.77)/g2 + g1^3*g2^2*g3*t^8.78 + g1^2*g2*g3*g4^3*t^8.78 + (g1^3*g3^3*t^8.79)/g4^18 + (g1^2*g3^2*t^8.82)/g4^9 + (g1*g3^2*t^8.82)/(g2*g4^6) + (2*g3*g4^6*t^8.84)/(g1*g2^2) - 3*g1*g3*t^8.85 + (4*g3*g4^3*t^8.85)/g2 + (g1^2*g2*g3*t^8.86)/g4^3 + (g4^15*t^8.87)/(g1^2*g2^2) + (g4^18*t^8.87)/(g1^3*g2^3) + 2*g4^9*t^8.88 + (2*g4^12*t^8.88)/(g1*g2) + g1^2*g2^2*g4^3*t^8.89 + 2*g1*g2*g4^6*t^8.89 + g1^3*g2^3*t^8.9 + (g3*t^8.92)/(g1*g2^2) + (g3*g4^3*t^8.92)/(g1^2*g2^3) - (4*g1*g3*t^8.93)/g4^6 + (g3*t^8.93)/(g2*g4^3) + (3*g4^9*t^8.95)/(g1^2*g2^2) + (g4^12*t^8.95)/(g1^3*g2^3) - g4^3*t^8.96 - (2*g4^6*t^8.96)/(g1*g2) - 5*g1*g2*t^8.97 + (g3*t^8.99)/(g1^2*g2^3*g4^3) - t^4.01/(g4*y) - t^5.03/(g4^2*y) - t^6.03/(g1*g2*y) - (g1*g3*t^6.86)/(g4*y) - (g1*g3*t^6.94)/(g4^7*y) - (g4^2*t^6.97)/y - (g4^5*t^6.97)/(g1*g2*y) - (g1*g2*t^6.98)/(g4*y) - t^7.05/(g1*g2*g4*y) + (g3*g4*t^7.87)/(g2*y) - (g1*g3*t^7.88)/(g4^2*y) + (g3*t^7.95)/(g2*g4^5*y) - (g1*g3*t^7.96)/(g4^8*y) + (g4^7*t^7.98)/(g1^2*g2^2*y) - (g4*t^8.06)/(g1^2*g2^2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g1*g3*g4^3*t^8.81)/y + (g3*g4^6*t^8.81)/(g2*y) + (g1^2*g2*g3*t^8.82)/y + (g3*t^8.89)/(g2*y) + (g1^2*g2*g3*t^8.9)/(g4^6*y) + (g4^6*t^8.92)/y + (g4^9*t^8.92)/(g1*g2*y) + (g1*g2*g4^3*t^8.93)/y - (g3*t^8.96)/(g2*g4^6*y) - (t^4.01*y)/g4 - (t^5.03*y)/g4^2 - (t^6.03*y)/(g1*g2) - (g1*g3*t^6.86*y)/g4 - (g1*g3*t^6.94*y)/g4^7 - g4^2*t^6.97*y - (g4^5*t^6.97*y)/(g1*g2) - (g1*g2*t^6.98*y)/g4 - (t^7.05*y)/(g1*g2*g4) + (g3*g4*t^7.87*y)/g2 - (g1*g3*t^7.88*y)/g4^2 + (g3*t^7.95*y)/(g2*g4^5) - (g1*g3*t^7.96*y)/g4^8 + (g4^7*t^7.98*y)/(g1^2*g2^2) - (g4*t^8.06*y)/(g1^2*g2^2) + (g1^2*g3^2*t^8.78*y)/g4^6 + g1*g3*g4^3*t^8.81*y + (g3*g4^6*t^8.81*y)/g2 + g1^2*g2*g3*t^8.82*y + (g3*t^8.89*y)/g2 + (g1^2*g2*g3*t^8.9*y)/g4^6 + g4^6*t^8.92*y + (g4^9*t^8.92*y)/(g1*g2) + g1*g2*g4^3*t^8.93*y - (g3*t^8.96*y)/(g2*g4^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
59491 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.475 | 1.6857 | 0.875 | [X:[1.3257], M:[0.9956, 0.9886, 0.6901], q:[0.5102, 0.4786], qb:[0.4942, 0.4942], phi:[0.3371]] | t^2.07 + 2*t^2.92 + t^2.97 + t^2.99 + t^3.01 + t^3.93 + t^3.98 + 2*t^4.02 + t^4.14 + 2*t^4.94 + 2*t^4.99 + 3*t^5.04 + t^5.06 + t^5.08 + t^5.41 + 2*t^5.46 + t^5.51 + 3*t^5.84 + 2*t^5.88 + t^5.91 + 3*t^5.93 + t^5.95 + t^5.97 + t^5.98 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
60691 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4968 | 1.7302 | 0.8651 | [X:[1.3253], M:[0.9756, 0.988, 0.6747, 0.6747], q:[0.5122, 0.4758], qb:[0.5122, 0.4758], phi:[0.3373]] | 2*t^2.02 + t^2.85 + t^2.93 + 3*t^2.96 + t^3.87 + t^3.98 + 3*t^4.05 + t^4.09 + 3*t^4.88 + 2*t^4.95 + 8*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + 3*t^5.82 + t^5.85 + 3*t^5.89 + 6*t^5.93 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47954 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4552 | 1.6484 | 0.8828 | [X:[1.3241], M:[0.9774, 0.9862], q:[0.5113, 0.4749], qb:[0.5113, 0.4749], phi:[0.3379]] | t^2.85 + t^2.932 + 3*t^2.959 + t^3.863 + 3*t^3.972 + t^4.082 + t^4.877 + 2*t^4.986 + t^5.095 + 2*t^5.397 + 2*t^5.506 + t^5.699 + t^5.782 + 3*t^5.808 + t^5.865 + t^5.891 + 6*t^5.917 - 4*t^6. - t^4.014/y - t^5.028/y - t^4.014*y - t^5.028*y | detail |