Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59491 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.475 1.6857 0.875 [X:[1.3257], M:[0.9956, 0.9886, 0.6901], q:[0.5102, 0.4786], qb:[0.4942, 0.4942], phi:[0.3371]] [X:[[0, 0, 2]], M:[[1, 1, -6], [0, 0, 3], [-1, -1, 1]], q:[[-1, -2, 6], [1, 0, 0]], qb:[[0, 1, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$ ${}$ -4 t^2.07 + 2*t^2.92 + t^2.97 + t^2.99 + t^3.01 + t^3.93 + t^3.98 + 2*t^4.02 + t^4.14 + 2*t^4.94 + 2*t^4.99 + 3*t^5.04 + t^5.06 + t^5.08 + t^5.41 + 2*t^5.46 + t^5.51 + 3*t^5.84 + 2*t^5.88 + t^5.91 + 3*t^5.93 + t^5.95 + t^5.97 + t^5.98 - 4*t^6. + t^6.03 + t^6.05 + t^6.09 + t^6.21 + t^6.43 + 2*t^6.47 + t^6.52 + 2*t^6.85 + 3*t^6.9 + 6*t^6.94 + t^6.96 + 3*t^6.99 - t^7.01 + 2*t^7.04 + 2*t^7.06 + 2*t^7.11 + t^7.13 + t^7.15 + t^7.34 - t^7.43 + t^7.44 + 3*t^7.48 + 2*t^7.53 + t^7.58 + t^7.63 + 5*t^7.86 + 4*t^7.91 + t^7.93 + 10*t^7.95 + t^7.98 + 5*t^8. - t^8.02 + t^8.04 + 6*t^8.05 - 4*t^8.07 + t^8.1 + t^8.17 + t^8.28 + 2*t^8.33 + 5*t^8.38 - t^8.4 + 2*t^8.42 + 3*t^8.43 - 2*t^8.45 + 3*t^8.47 - 2*t^8.5 + t^8.52 - 2*t^8.54 - t^8.59 + 4*t^8.75 + 3*t^8.8 + t^8.82 + 5*t^8.85 + 3*t^8.87 + t^8.89 + 3*t^8.9 - 8*t^8.92 + 4*t^8.94 + t^8.96 + 3*t^8.97 - 2*t^8.99 - t^4.01/y - t^5.02/y - t^6.08/y - (2*t^6.93)/y - t^6.98/y - t^7./y - t^7.02/y - t^7.09/y - t^7.94/y + t^7.99/y - t^8.01/y + t^8.06/y + t^8.08/y - t^8.15/y + t^8.84/y + (2*t^8.88)/y + (2*t^8.91)/y + (2*t^8.93)/y + t^8.98/y - t^4.01*y - t^5.02*y - t^6.08*y - 2*t^6.93*y - t^6.98*y - t^7.*y - t^7.02*y - t^7.09*y - t^7.94*y + t^7.99*y - t^8.01*y + t^8.06*y + t^8.08*y - t^8.15*y + t^8.84*y + 2*t^8.88*y + 2*t^8.91*y + 2*t^8.93*y + t^8.98*y (g3*t^2.07)/(g1*g2) + 2*g1*g2*t^2.92 + g3^3*t^2.97 + (g1*g2*t^2.99)/g3^6 + (g3^6*t^3.01)/(g1*g2) + (g1*g2*t^3.93)/g3 + g3^2*t^3.98 + (2*g3^5*t^4.02)/(g1*g2) + (g3^2*t^4.14)/(g1^2*g2^2) + (2*g1*g2*t^4.94)/g3^2 + 2*g3*t^4.99 + (3*g3^4*t^5.04)/(g1*g2) + t^5.06/g3^5 + (g3^7*t^5.08)/(g1^2*g2^2) + (g1*g3^5*t^5.41)/g2^2 + (2*g2^3*t^5.46)/g3 + (g3^11*t^5.51)/(g1*g2^4) + 3*g1^2*g2^2*t^5.84 + 2*g1*g2*g3^3*t^5.88 + (g1^2*g2^2*t^5.91)/g3^6 + 3*g3^6*t^5.93 + (g1*g2*t^5.95)/g3^3 + (g1^2*g2^2*t^5.97)/g3^12 + (g3^9*t^5.98)/(g1*g2) - 4*t^6. + (g3^12*t^6.03)/(g1^2*g2^2) + (g3^3*t^6.05)/(g1*g2) + (g3^6*t^6.09)/(g1^2*g2^2) + (g3^3*t^6.21)/(g1^3*g2^3) + (g1*g3^4*t^6.43)/g2^2 + (2*g2^3*t^6.47)/g3^2 + (g3^10*t^6.52)/(g1*g2^4) + (2*g1^2*g2^2*t^6.85)/g3 + 3*g1*g2*g3^2*t^6.9 + 6*g3^5*t^6.94 + (g1*g2*t^6.96)/g3^4 + (3*g3^8*t^6.99)/(g1*g2) - t^7.01/g3 + (2*g3^11*t^7.04)/(g1^2*g2^2) + (2*g3^2*t^7.06)/(g1*g2) + (2*g3^5*t^7.11)/(g1^2*g2^2) + t^7.13/(g1*g2*g3^4) + (g3^8*t^7.15)/(g1^3*g2^3) + (g1^3*t^7.34)/g3^3 - (g1*g2^4*t^7.43)/g3^6 + (g1*g3^3*t^7.44)/g2^2 + (4*g2^3*t^7.48)/g3^3 - (g3^6*t^7.48)/g2^3 + (g2^2*t^7.53)/g1 + (g3^9*t^7.53)/(g1*g2^4) + (g3^12*t^7.58)/(g1^2*g2^5) + (g3^15*t^7.63)/(g1^3*g2^6) + (5*g1^2*g2^2*t^7.86)/g3^2 + 4*g1*g2*g3*t^7.91 + (g1^2*g2^2*t^7.93)/g3^8 + 10*g3^4*t^7.95 + (g1*g2*t^7.98)/g3^5 + (5*g3^7*t^8.)/(g1*g2) - t^8.02/g3^2 + (g1*g2*t^8.04)/g3^11 + (6*g3^10*t^8.05)/(g1^2*g2^2) - (4*g3*t^8.07)/(g1*g2) + (g3^13*t^8.1)/(g1^3*g2^3) + (g3^7*t^8.17)/(g1^3*g2^3) + (g3^4*t^8.28)/(g1^4*g2^4) + (2*g1^2*g3^5*t^8.33)/g2 + (4*g1*g2^4*t^8.38)/g3 + (g1*g3^8*t^8.38)/g2^2 - (g1^2*t^8.4)/(g2*g3) + 2*g2^3*g3^2*t^8.42 + (3*g3^11*t^8.43)/g2^3 - (2*g1*g2^4*t^8.45)/g3^7 + (2*g2^2*g3^5*t^8.47)/g1 + (g3^14*t^8.47)/(g1*g2^4) - (2*g3^5*t^8.5)/g2^3 + (g3^17*t^8.52)/(g1^2*g2^5) - (2*g2^2*t^8.54)/(g1*g3) - (g3^11*t^8.59)/(g1^2*g2^5) + 4*g1^3*g2^3*t^8.75 + 3*g1^2*g2^2*g3^3*t^8.8 + (g1^3*g2^3*t^8.82)/g3^6 + 5*g1*g2*g3^6*t^8.85 + (3*g1^2*g2^2*t^8.87)/g3^3 + (g1^3*g2^3*t^8.89)/g3^12 + 3*g3^9*t^8.9 - 8*g1*g2*t^8.92 + (g1^2*g2^2*t^8.94)/g3^9 + (3*g3^12*t^8.94)/(g1*g2) + (g1^3*g2^3*t^8.96)/g3^18 + 3*g3^3*t^8.97 - (3*g1*g2*t^8.99)/g3^6 + (g3^15*t^8.99)/(g1^2*g2^2) - t^4.01/(g3*y) - t^5.02/(g3^2*y) - t^6.08/(g1*g2*y) - (2*g1*g2*t^6.93)/(g3*y) - (g3^2*t^6.98)/y - (g1*g2*t^7.)/(g3^7*y) - (g3^5*t^7.02)/(g1*g2*y) - t^7.09/(g1*g2*g3*y) - (g1*g2*t^7.94)/(g3^2*y) + (g3*t^7.99)/y - (g1*g2*t^8.01)/(g3^8*y) + t^8.06/(g3^5*y) + (g3^7*t^8.08)/(g1^2*g2^2*y) - (g3*t^8.15)/(g1^2*g2^2*y) + (g1^2*g2^2*t^8.84)/y + (2*g1*g2*g3^3*t^8.88)/y + (2*g1^2*g2^2*t^8.91)/(g3^6*y) + (2*g3^6*t^8.93)/y + (g3^9*t^8.98)/(g1*g2*y) - (t^4.01*y)/g3 - (t^5.02*y)/g3^2 - (t^6.08*y)/(g1*g2) - (2*g1*g2*t^6.93*y)/g3 - g3^2*t^6.98*y - (g1*g2*t^7.*y)/g3^7 - (g3^5*t^7.02*y)/(g1*g2) - (t^7.09*y)/(g1*g2*g3) - (g1*g2*t^7.94*y)/g3^2 + g3*t^7.99*y - (g1*g2*t^8.01*y)/g3^8 + (t^8.06*y)/g3^5 + (g3^7*t^8.08*y)/(g1^2*g2^2) - (g3*t^8.15*y)/(g1^2*g2^2) + g1^2*g2^2*t^8.84*y + 2*g1*g2*g3^3*t^8.88*y + (2*g1^2*g2^2*t^8.91*y)/g3^6 + 2*g3^6*t^8.93*y + (g3^9*t^8.98*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57743 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.476 1.6894 0.8737 [X:[1.3247], M:[0.9766, 0.987, 0.6738], q:[0.5109, 0.4761], qb:[0.5125, 0.4746], phi:[0.3377]] t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.86 + 2*t^3.97 + t^4.04 + t^4.08 + t^4.87 + t^4.88 + t^4.95 + 3*t^4.98 + 2*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 2*t^5.81 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.91 + 3*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail