Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60691 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4968 | 1.7302 | 0.8651 | [X:[1.3253], M:[0.9756, 0.988, 0.6747, 0.6747], q:[0.5122, 0.4758], qb:[0.5122, 0.4758], phi:[0.3373]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [0, 0, 0, 3], [-1, -1, 0, 1], [1, 1, 0, -5]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}M_{3}X_{1}$, ${ }M_{4}X_{1}$ | -2 | 2*t^2.02 + t^2.85 + t^2.93 + 3*t^2.96 + t^3.87 + t^3.98 + 3*t^4.05 + t^4.09 + 3*t^4.88 + 2*t^4.95 + 8*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + 3*t^5.82 + t^5.85 + 3*t^5.89 + 6*t^5.93 - 2*t^6. + 4*t^6.07 + 2*t^6.42 + 2*t^6.52 + t^6.72 + t^6.79 + 4*t^6.83 + 4*t^6.9 + 4*t^6.94 + 3*t^6.97 + 11*t^7.01 + 3*t^7.05 + 2*t^7.32 + 4*t^7.43 + 4*t^7.54 + 2*t^7.65 + 4*t^7.73 + 3*t^7.81 + 11*t^7.84 + 2*t^7.88 + 5*t^7.91 + 18*t^7.95 - 6*t^8.02 + 3*t^8.06 + 5*t^8.1 - 3*t^8.13 + t^8.17 + 2*t^8.26 + 8*t^8.37 + 6*t^8.48 - 2*t^8.55 + t^8.56 + t^8.64 - 2*t^8.66 + 3*t^8.67 + t^8.71 + 4*t^8.75 + 7*t^8.78 + 3*t^8.82 + 6*t^8.85 + 10*t^8.89 + 2*t^8.93 - 5*t^8.96 - t^4.01/y - t^5.02/y - (2*t^6.04)/y - t^6.87/y - t^6.94/y - (3*t^6.98)/y - t^7.05/y + t^7.88/y + t^7.95/y + (5*t^7.99)/y - (3*t^8.06)/y + t^8.78/y + (3*t^8.82)/y + (2*t^8.89)/y + (3*t^8.93)/y - (2*t^8.96)/y - t^4.01*y - t^5.02*y - 2*t^6.04*y - t^6.87*y - t^6.94*y - 3*t^6.98*y - t^7.05*y + t^7.88*y + t^7.95*y + 5*t^7.99*y - 3*t^8.06*y + t^8.78*y + 3*t^8.82*y + 2*t^8.89*y + 3*t^8.93*y - 2*t^8.96*y | (g1*g2*t^2.02)/g4^5 + (g4*t^2.02)/(g1*g2) + g1*g3*t^2.85 + (g1*g3*t^2.93)/g4^6 + g1*g2*t^2.96 + g4^3*t^2.96 + (g4^6*t^2.96)/(g1*g2) + (g1*g3*t^3.87)/g4 + g4^2*t^3.98 + (g1^2*g2^2*t^4.05)/g4^10 + t^4.05/g4^4 + (g4^2*t^4.05)/(g1^2*g2^2) + (g4^5*t^4.09)/(g1*g3) + (g1^2*g2*g3*t^4.88)/g4^5 + (g1*g3*t^4.88)/g4^2 + (g3*g4*t^4.88)/g2 + (g1^2*g2*g3*t^4.95)/g4^11 + (g3*t^4.95)/(g2*g4^5) + (g1^2*g2^2*t^4.99)/g4^5 + (2*g1*g2*t^4.99)/g4^2 + 2*g4*t^4.99 + (2*g4^4*t^4.99)/(g1*g2) + (g4^7*t^4.99)/(g1^2*g2^2) + (g4^4*t^5.1)/(g1*g3) + (g2*g3^2*t^5.4)/g4 + (g1*g4^5*t^5.4)/(g2*g3) + (g2^2*g3*t^5.51)/g4 + (g4^11*t^5.51)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.71 + (g1^2*g3^2*t^5.78)/g4^6 + g1^2*g2*g3*t^5.82 + g1*g3*g4^3*t^5.82 + (g3*g4^6*t^5.82)/g2 + (g1^2*g3^2*t^5.85)/g4^12 + (g3*t^5.89)/g2 + (g1^2*g2*g3*t^5.89)/g4^6 + (g1*g3*t^5.89)/g4^3 + g1^2*g2^2*t^5.93 + g1*g2*g4^3*t^5.93 + 2*g4^6*t^5.93 + (g4^9*t^5.93)/(g1*g2) + (g4^12*t^5.93)/(g1^2*g2^2) - 4*t^6. + (g1*g2*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g2) + (g1^3*g2^3*t^6.07)/g4^15 + (g1*g2*t^6.07)/g4^9 + t^6.07/(g1*g2*g4^3) + (g4^3*t^6.07)/(g1^3*g2^3) + (g2*g3^2*t^6.42)/g4^2 + (g1*g4^4*t^6.42)/(g2*g3) + (g2^2*g3*t^6.52)/g4^2 + (g4^10*t^6.52)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.72)/g4 + (g1^2*g3^2*t^6.79)/g4^7 + (g1^2*g2*g3*t^6.83)/g4 + 2*g1*g3*g4^2*t^6.83 + (g3*g4^5*t^6.83)/g2 + (g1^3*g2^2*g3*t^6.9)/g4^10 + (2*g1*g3*t^6.9)/g4^4 + (g3*g4^2*t^6.9)/(g1*g2^2) + g1*g2*g4^2*t^6.94 + 2*g4^5*t^6.94 + (g4^8*t^6.94)/(g1*g2) + (g1^3*g2^2*g3*t^6.97)/g4^16 + (g1*g3*t^6.97)/g4^10 + (g3*t^6.97)/(g1*g2^2*g4^4) + (g1^3*g2^3*t^7.01)/g4^10 + (2*g1^2*g2^2*t^7.01)/g4^7 + (2*g1*g2*t^7.01)/g4^4 + t^7.01/g4 + (2*g4^2*t^7.01)/(g1*g2) + (2*g4^5*t^7.01)/(g1^2*g2^2) + (g4^8*t^7.01)/(g1^3*g2^3) + (g2*g4^5*t^7.05)/g3 + (g4^8*t^7.05)/(g1*g3) + (g4^11*t^7.05)/(g1^2*g2*g3) + (g1^3*t^7.32)/g4^3 + (g3^3*t^7.32)/g4^3 + (g1^2*t^7.43)/g3 + (g3^2*t^7.43)/g1 + (g2*g3^2*t^7.43)/g4^3 + (g1*g4^3*t^7.43)/(g2*g3) + (g1*g2^3*g3*t^7.54)/g4^6 + (g2^2*g3*t^7.54)/g4^3 + (g4^9*t^7.54)/(g1*g2^2*g3^2) + (g4^12*t^7.54)/(g1^2*g2^3*g3^2) + (g2^3*t^7.65)/g4^3 + (g4^15*t^7.65)/(g1^3*g2^3*g3^3) + (g1^3*g2*g3^2*t^7.73)/g4^5 + (2*g1^2*g3^2*t^7.73)/g4^2 + (g1*g3^2*g4*t^7.73)/g2 + (g1^3*g2*g3^2*t^7.81)/g4^11 + (g1^2*g3^2*t^7.81)/g4^8 + (g1*g3^2*t^7.81)/(g2*g4^5) + (g1^3*g2^2*g3*t^7.84)/g4^5 + (3*g1^2*g2*g3*t^7.84)/g4^2 + 3*g1*g3*g4*t^7.84 + (3*g3*g4^4*t^7.84)/g2 + (g3*g4^7*t^7.84)/(g1*g2^2) + (g1^3*g2*g3^2*t^7.88)/g4^17 + (g1*g3^2*t^7.88)/(g2*g4^11) + (g1^3*g2^2*g3*t^7.91)/g4^11 + (g1^2*g2*g3*t^7.91)/g4^8 + (g1*g3*t^7.91)/g4^5 + (g3*t^7.91)/(g2*g4^2) + (g3*g4*t^7.91)/(g1*g2^2) + (g1^3*g2^3*t^7.95)/g4^5 + (2*g1^2*g2^2*t^7.95)/g4^2 + 3*g1*g2*g4*t^7.95 + 6*g4^4*t^7.95 + (3*g4^7*t^7.95)/(g1*g2) + (2*g4^10*t^7.95)/(g1^2*g2^2) + (g4^13*t^7.95)/(g1^3*g2^3) + (g1^2*g2^2*t^8.02)/g4^8 - (4*g1*g2*t^8.02)/g4^5 - (4*g4*t^8.02)/(g1*g2) + (g4^4*t^8.02)/(g1^2*g2^2) + (g2*g4^4*t^8.06)/g3 + (g4^7*t^8.06)/(g1*g3) + (g4^10*t^8.06)/(g1^2*g2*g3) + (g1^4*g2^4*t^8.1)/g4^20 + (g1^2*g2^2*t^8.1)/g4^14 + t^8.1/g4^8 + t^8.1/(g1^2*g2^2*g4^2) + (g4^4*t^8.1)/(g1^4*g2^4) - (g2*t^8.13)/(g3*g4^2) - (g4*t^8.13)/(g1*g3) - (g4^4*t^8.13)/(g1^2*g2*g3) + (g4^10*t^8.17)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.26)/g4 + (g1^2*g4^5*t^8.26)/g2 + (2*g1*g2^2*g3^2*t^8.37)/g4 + g2*g3^2*g4^2*t^8.37 + (g1^2*g4^5*t^8.37)/g3 + (g3^2*g4^5*t^8.37)/g1 + (g1*g4^8*t^8.37)/(g2*g3) + (2*g4^11*t^8.37)/(g2^2*g3) + (g1*g2^3*g3*t^8.48)/g4 + g2^2*g3*g4^2*t^8.48 + (g2*g3*g4^5*t^8.48)/g1 + (g4^11*t^8.48)/(g2*g3^2) + (g4^14*t^8.48)/(g1*g2^2*g3^2) + (g4^17*t^8.48)/(g1^2*g2^3*g3^2) - (g2*g3*t^8.55)/(g1*g4) - (g4^5*t^8.55)/(g2*g3^2) + g1^3*g3^3*t^8.56 + (g1^3*g3^3*t^8.64)/g4^6 - (g2^2*t^8.66)/(g1*g4) - (g4^11*t^8.66)/(g1^2*g2^2*g3^3) + g1^3*g2*g3^2*t^8.67 + g1^2*g3^2*g4^3*t^8.67 + (g1*g3^2*g4^6*t^8.67)/g2 + (g1^3*g3^3*t^8.71)/g4^12 + (g1*g3^2*t^8.75)/g2 + (g1^3*g2*g3^2*t^8.75)/g4^6 + (2*g1^2*g3^2*t^8.75)/g4^3 + g1^3*g2^2*g3*t^8.78 + (g1^3*g3^3*t^8.78)/g4^18 + g1^2*g2*g3*g4^3*t^8.78 + 2*g1*g3*g4^6*t^8.78 + (g3*g4^9*t^8.78)/g2 + (g3*g4^12*t^8.78)/(g1*g2^2) + (g1^3*g2*g3^2*t^8.82)/g4^12 + (g1^2*g3^2*t^8.82)/g4^9 + (g1*g3^2*t^8.82)/(g2*g4^6) - 2*g1*g3*t^8.85 + (g1^3*g2^2*g3*t^8.85)/g4^6 + (3*g1^2*g2*g3*t^8.85)/g4^3 + (3*g3*g4^3*t^8.85)/g2 + (g3*g4^6*t^8.85)/(g1*g2^2) + g1^3*g2^3*t^8.89 + g1^2*g2^2*g4^3*t^8.89 + 2*g1*g2*g4^6*t^8.89 + 2*g4^9*t^8.89 + (2*g4^12*t^8.89)/(g1*g2) + (g4^15*t^8.89)/(g1^2*g2^2) + (g4^18*t^8.89)/(g1^3*g2^3) + (g1^4*g2^3*g3*t^8.93)/g4^15 + (2*g1^2*g2*g3*t^8.93)/g4^9 - (4*g1*g3*t^8.93)/g4^6 + (2*g3*t^8.93)/(g2*g4^3) + (g3*g4^3*t^8.93)/(g1^2*g2^3) - 3*g1*g2*t^8.96 + (g1^2*g2^2*t^8.96)/g4^3 - g4^3*t^8.96 - (3*g4^6*t^8.96)/(g1*g2) + (g4^9*t^8.96)/(g1^2*g2^2) - t^4.01/(g4*y) - t^5.02/(g4^2*y) - t^6.04/(g1*g2*y) - (g1*g2*t^6.04)/(g4^6*y) - (g1*g3*t^6.87)/(g4*y) - (g1*g3*t^6.94)/(g4^7*y) - (g1*g2*t^6.98)/(g4*y) - (g4^2*t^6.98)/y - (g4^5*t^6.98)/(g1*g2*y) - (g1*g2*t^7.05)/(g4^7*y) + t^7.05/(g4^4*y) - t^7.05/(g1*g2*g4*y) + (g1^2*g2*g3*t^7.88)/(g4^5*y) - (g1*g3*t^7.88)/(g4^2*y) + (g3*g4*t^7.88)/(g2*y) + (g1^2*g2*g3*t^7.95)/(g4^11*y) - (g1*g3*t^7.95)/(g4^8*y) + (g3*t^7.95)/(g2*g4^5*y) + (g1^2*g2^2*t^7.99)/(g4^5*y) + (g1*g2*t^7.99)/(g4^2*y) + (g4*t^7.99)/y + (g4^4*t^7.99)/(g1*g2*y) + (g4^7*t^7.99)/(g1^2*g2^2*y) - (g1^2*g2^2*t^8.06)/(g4^11*y) - t^8.06/(g4^5*y) - (g4*t^8.06)/(g1^2*g2^2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g1^2*g2*g3*t^8.82)/y + (g1*g3*g4^3*t^8.82)/y + (g3*g4^6*t^8.82)/(g2*y) + (g3*t^8.89)/(g2*y) + (g1^2*g2*g3*t^8.89)/(g4^6*y) + (g1*g2*g4^3*t^8.93)/y + (g4^6*t^8.93)/y + (g4^9*t^8.93)/(g1*g2*y) - (g1^2*g2*g3*t^8.96)/(g4^12*y) - (g3*t^8.96)/(g2*g4^6*y) - (t^4.01*y)/g4 - (t^5.02*y)/g4^2 - (t^6.04*y)/(g1*g2) - (g1*g2*t^6.04*y)/g4^6 - (g1*g3*t^6.87*y)/g4 - (g1*g3*t^6.94*y)/g4^7 - (g1*g2*t^6.98*y)/g4 - g4^2*t^6.98*y - (g4^5*t^6.98*y)/(g1*g2) - (g1*g2*t^7.05*y)/g4^7 + (t^7.05*y)/g4^4 - (t^7.05*y)/(g1*g2*g4) + (g1^2*g2*g3*t^7.88*y)/g4^5 - (g1*g3*t^7.88*y)/g4^2 + (g3*g4*t^7.88*y)/g2 + (g1^2*g2*g3*t^7.95*y)/g4^11 - (g1*g3*t^7.95*y)/g4^8 + (g3*t^7.95*y)/(g2*g4^5) + (g1^2*g2^2*t^7.99*y)/g4^5 + (g1*g2*t^7.99*y)/g4^2 + g4*t^7.99*y + (g4^4*t^7.99*y)/(g1*g2) + (g4^7*t^7.99*y)/(g1^2*g2^2) - (g1^2*g2^2*t^8.06*y)/g4^11 - (t^8.06*y)/g4^5 - (g4*t^8.06*y)/(g1^2*g2^2) + (g1^2*g3^2*t^8.78*y)/g4^6 + g1^2*g2*g3*t^8.82*y + g1*g3*g4^3*t^8.82*y + (g3*g4^6*t^8.82*y)/g2 + (g3*t^8.89*y)/g2 + (g1^2*g2*g3*t^8.89*y)/g4^6 + g1*g2*g4^3*t^8.93*y + g4^6*t^8.93*y + (g4^9*t^8.93*y)/(g1*g2) - (g1^2*g2*g3*t^8.96*y)/g4^12 - (g3*t^8.96*y)/(g2*g4^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57743 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.476 | 1.6894 | 0.8737 | [X:[1.3247], M:[0.9766, 0.987, 0.6738], q:[0.5109, 0.4761], qb:[0.5125, 0.4746], phi:[0.3377]] | t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.86 + 2*t^3.97 + t^4.04 + t^4.08 + t^4.87 + t^4.88 + t^4.95 + 3*t^4.98 + 2*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 2*t^5.81 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.91 + 3*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |