Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60778 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ | 1.2098 | 1.4483 | 0.8353 | [X:[1.5759], M:[0.7278, 0.9684, 1.1519], q:[0.5158, 0.212], qb:[0.5158, 0.212], phi:[0.4241]] | [X:[[0, 0, 1]], M:[[0, 0, 3], [0, 0, -7], [0, 0, 2]], q:[[-1, 0, 7], [0, -1, -1]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ | 1 | 3*t^2.18 + t^2.54 + t^2.91 + 3*t^3.46 + t^3.82 + 2*t^4.09 + 7*t^4.37 + 6*t^4.73 + 2*t^5. + 2*t^5.09 + 2*t^5.36 + t^5.45 + 10*t^5.64 + 2*t^5.72 + t^5.81 + t^6. + 8*t^6.28 + 2*t^6.36 + 13*t^6.55 + 2*t^6.64 + t^6.72 + 17*t^6.91 + 6*t^7.19 + 6*t^7.27 + 10*t^7.55 + 4*t^7.63 + 23*t^7.82 + 2*t^7.91 + 2*t^7.99 + 8*t^8.18 + 2*t^8.27 + t^8.35 + 24*t^8.46 - t^8.54 + 2*t^8.63 + t^8.72 + 22*t^8.73 + 6*t^8.82 - t^8.91 - t^4.27/y - t^5.54/y - (3*t^6.46)/y - t^7.18/y + (3*t^7.37)/y + (2*t^8.09)/y + (4*t^8.64)/y - t^4.27*y - t^5.54*y - 3*t^6.46*y - t^7.18*y + 3*t^7.37*y + 2*t^8.09*y + 4*t^8.64*y | (g1*t^2.18)/(g2*g3) + g3^3*t^2.18 + (g2*g3^7*t^2.18)/g1 + t^2.54/g3^2 + t^2.91/g3^7 + (g1*t^3.46)/(g2*g3^2) + g3^2*t^3.46 + (g2*g3^6*t^3.46)/g1 + t^3.82/g3^3 + (g1*g2^2*t^4.09)/g3 + (g3^4*t^4.09)/(g1*g2^2) + (g1^2*t^4.37)/(g2^2*g3^2) + (g1*g3^2*t^4.37)/g2 + 3*g3^6*t^4.37 + (g2*g3^10*t^4.37)/g1 + (g2^2*g3^14*t^4.37)/g1^2 + (2*g1*t^4.73)/(g2*g3^3) + 2*g3*t^4.73 + (2*g2*g3^5*t^4.73)/g1 + (g1^2*g2*t^5.)/g3 + (g3^12*t^5.)/(g1^2*g2) + (2*t^5.09)/g3^4 + (g1*g2^2*t^5.36)/g3^2 + (g3^3*t^5.36)/(g1*g2^2) + t^5.45/g3^9 + (g1^2*t^5.64)/(g2^2*g3^3) + (2*g1*g3*t^5.64)/g2 + 4*g3^5*t^5.64 + (2*g2*g3^9*t^5.64)/g1 + (g2^2*g3^13*t^5.64)/g1^2 + t^5.72/(g2^3*g3^6) + (g2^3*t^5.72)/g3^3 + t^5.81/g3^14 - 3*t^6. + (2*g1*t^6.)/(g2*g3^4) + (2*g2*g3^4*t^6.)/g1 + (2*g1^2*g2*t^6.28)/g3^2 + g1*g2^2*g3^2*t^6.28 + (g3^3*t^6.28)/g2^3 + g2^3*g3^6*t^6.28 + (g3^7*t^6.28)/(g1*g2^2) + (2*g3^11*t^6.28)/(g1^2*g2) + (2*t^6.36)/g3^5 + (g1^3*t^6.55)/(g2^3*g3^3) + (g1^2*g3*t^6.55)/g2^2 + (3*g1*g3^5*t^6.55)/g2 + 3*g3^9*t^6.55 + (3*g2*g3^13*t^6.55)/g1 + (g2^2*g3^17*t^6.55)/g1^2 + (g2^3*g3^21*t^6.55)/g1^3 - (g1^2*g2*t^6.64)/g3^7 + (2*g1*g2^2*t^6.64)/g3^3 + (2*g3^2*t^6.64)/(g1*g2^2) - (g3^6*t^6.64)/(g1^2*g2) + t^6.72/g3^10 + (2*g1*t^6.91)/g2 + (3*g1^2*t^6.91)/(g2^2*g3^4) + 7*g3^4*t^6.91 + (2*g2*g3^8*t^6.91)/g1 + (3*g2^2*g3^12*t^6.91)/g1^2 + (g1^3*t^7.19)/g3^2 + g1^2*g2*g3^2*t^7.19 + g1*g2^2*g3^6*t^7.19 + (g3^11*t^7.19)/(g1*g2^2) + (g3^15*t^7.19)/(g1^2*g2) + (g3^19*t^7.19)/g1^3 + (3*g1*t^7.27)/(g2*g3^5) + (3*g2*g3^3*t^7.27)/g1 + (3*g1^2*g2*t^7.55)/g3^3 + (2*g3^2*t^7.55)/g2^3 + 2*g2^3*g3^5*t^7.55 + (3*g3^10*t^7.55)/(g1^2*g2) + (4*t^7.63)/g3^6 + (2*g1^2*t^7.82)/g2^2 + (g1^3*t^7.82)/(g2^3*g3^4) + (6*g1*g3^4*t^7.82)/g2 + 5*g3^8*t^7.82 + (6*g2*g3^12*t^7.82)/g1 + (2*g2^2*g3^16*t^7.82)/g1^2 + (g2^3*g3^20*t^7.82)/g1^3 - g2^3*t^7.91 - (g1^2*g2*t^7.91)/g3^8 + (g1*t^7.91)/(g2^4*g3^7) + (2*g1*g2^2*t^7.91)/g3^4 - t^7.91/(g2^3*g3^3) + (2*g3*t^7.91)/(g1*g2^2) + (g2^4*g3^4*t^7.91)/g1 - (g3^5*t^7.91)/(g1^2*g2) + (2*t^7.99)/g3^11 + (3*g1^2*t^8.18)/(g2^2*g3^5) + (g1^2*g2^4*t^8.18)/g3^2 - (2*g1*t^8.18)/(g2*g3) + 4*g3^3*t^8.18 - (2*g2*g3^7*t^8.18)/g1 + (g3^8*t^8.18)/(g1^2*g2^4) + (3*g2^2*g3^11*t^8.18)/g1^2 + t^8.27/(g2^3*g3^8) + (g2^3*t^8.27)/g3^5 + t^8.35/g3^16 + (4*g1^3*t^8.46)/g3^3 + 2*g1^2*g2*g3*t^8.46 + (g1*g3^2*t^8.46)/g2^4 + 4*g1*g2^2*g3^5*t^8.46 + (g3^6*t^8.46)/g2^3 + g2^3*g3^9*t^8.46 + (4*g3^10*t^8.46)/(g1*g2^2) + (g2^4*g3^13*t^8.46)/g1 + (2*g3^14*t^8.46)/(g1^2*g2) + (4*g3^18*t^8.46)/g1^3 - (g1^2*t^8.54)/(g2^2*g3^10) + (3*g1*t^8.54)/(g2*g3^6) - (5*t^8.54)/g3^2 + (3*g2*g3^2*t^8.54)/g1 - (g2^2*g3^6*t^8.54)/g1^2 + t^8.63/(g2^3*g3^13) + (g2^3*t^8.63)/g3^10 + t^8.72/g3^21 + (g1^3*t^8.73)/g2^3 + (g1^4*t^8.73)/(g2^4*g3^4) + (3*g1^2*g3^4*t^8.73)/g2^2 + (3*g1*g3^8*t^8.73)/g2 + 6*g3^12*t^8.73 + (3*g2*g3^16*t^8.73)/g1 + (3*g2^2*g3^20*t^8.73)/g1^2 + (g2^3*g3^24*t^8.73)/g1^3 + (g2^4*g3^28*t^8.73)/g1^4 - g1*g2^2*t^8.82 - (2*g1^3*t^8.82)/g3^8 + (3*g1^2*g2*t^8.82)/g3^4 + (3*g3*t^8.82)/g2^3 + 3*g2^3*g3^4*t^8.82 - (g3^5*t^8.82)/(g1*g2^2) + (3*g3^9*t^8.82)/(g1^2*g2) - (2*g3^13*t^8.82)/g1^3 - t^8.91/g3^7 - t^4.27/(g3*y) - t^5.54/(g3^2*y) - (g1*t^6.46)/(g2*g3^2*y) - (g3^2*t^6.46)/y - (g2*g3^6*t^6.46)/(g1*y) - t^7.18/(g3^8*y) + (g1*g3^2*t^7.37)/(g2*y) + (g3^6*t^7.37)/y + (g2*g3^10*t^7.37)/(g1*y) + (g2*t^8.09)/(g1*y) + (g1*t^8.09)/(g2*g3^8*y) + (g1*g3*t^8.64)/(g2*y) + (2*g3^5*t^8.64)/y + (g2*g3^9*t^8.64)/(g1*y) - (t^4.27*y)/g3 - (t^5.54*y)/g3^2 - (g1*t^6.46*y)/(g2*g3^2) - g3^2*t^6.46*y - (g2*g3^6*t^6.46*y)/g1 - (t^7.18*y)/g3^8 + (g1*g3^2*t^7.37*y)/g2 + g3^6*t^7.37*y + (g2*g3^10*t^7.37*y)/g1 + (g2*t^8.09*y)/g1 + (g1*t^8.09*y)/(g2*g3^8) + (g1*g3*t^8.64*y)/g2 + 2*g3^5*t^8.64*y + (g2*g3^9*t^8.64*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57480 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4964 | 1.7271 | 0.8664 | [X:[], M:[0.9906, 0.9803, 0.7021], q:[0.5099, 0.4807], qb:[0.5099, 0.4807], phi:[0.3365]] | t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.04 + t^4.07 + t^4.13 + t^4.21 + 2*t^4.9 + t^4.96 + 6*t^4.99 + t^5.05 + 4*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 6*t^5.94 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |