Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59404 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ | 1.365 | 1.5897 | 0.8586 | [X:[1.3709], M:[0.8872, 0.8546, 1.0], q:[0.5727, 0.3145], qb:[0.5727, 0.3145], phi:[0.3709]] | [X:[[0, 0, 1]], M:[[0, 0, -3], [0, 0, 5], [0, 0, 0]], q:[[-1, 0, -5], [0, -1, -1]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -1 | t^2.23 + t^2.56 + 3*t^2.66 + t^3. + 2*t^3.77 + 2*t^4.11 + t^4.45 + t^4.55 + 2*t^4.72 + t^4.79 + 5*t^4.89 + t^5.13 + 2*t^5.23 + 6*t^5.32 + 2*t^5.49 + t^5.56 + 4*t^5.66 + 2*t^5.83 - t^6. + 2*t^6.17 + 2*t^6.34 + 6*t^6.44 + 2*t^6.61 + 3*t^6.68 + 6*t^6.77 + 2*t^6.94 + t^7.02 + 5*t^7.11 + 3*t^7.21 + t^7.35 + 6*t^7.38 + 2*t^7.45 + 13*t^7.55 + t^7.69 + 4*t^7.72 + 2*t^7.79 + 7*t^7.89 + 10*t^7.98 - 2*t^8.06 + t^8.13 + 6*t^8.15 + 2*t^8.23 + 10*t^8.32 + 2*t^8.39 + 10*t^8.49 + t^8.66 + 2*t^8.73 + 4*t^8.83 + 3*t^8.9 - t^4.11/y - t^5.23/y - t^6.34/y - t^6.68/y - (3*t^6.77)/y - t^7.45/y + t^7.89/y + (2*t^8.23)/y + (3*t^8.32)/y + (3*t^8.66)/y - t^8.9/y - t^4.11*y - t^5.23*y - t^6.34*y - t^6.68*y - 3*t^6.77*y - t^7.45*y + t^7.89*y + 2*t^8.23*y + 3*t^8.32*y + 3*t^8.66*y - t^8.9*y | g3^2*t^2.23 + g3^5*t^2.56 + (g2*t^2.66)/(g1*g3^5) + t^2.66/g3^3 + (g1*t^2.66)/(g2*g3) + t^3. + (g1*t^3.77)/g2 + (g2*t^3.77)/(g1*g3^4) + 2*g3*t^4.11 + g3^4*t^4.45 + t^4.55/g3^4 + t^4.72/(g1*g2^2*g3^6) + g1*g2^2*g3*t^4.72 + g3^7*t^4.79 + (2*g2*t^4.89)/(g1*g3^3) + t^4.89/g3 + (2*g1*g3*t^4.89)/g2 + g3^10*t^5.13 + 2*g3^2*t^5.23 + (g2^2*t^5.32)/(g1^2*g3^10) + (g2*t^5.32)/(g1*g3^8) + (2*t^5.32)/g3^6 + (g1*t^5.32)/(g2*g3^4) + (g1^2*t^5.32)/(g2^2*g3^2) + t^5.49/(g1^2*g2*g3^10) + g1^2*g2*g3*t^5.49 + g3^5*t^5.56 + (g2*t^5.66)/(g1*g3^5) + (2*t^5.66)/g3^3 + (g1*t^5.66)/(g2*g3) + t^5.83/(g1*g2^2*g3^5) + g1*g2^2*g3^2*t^5.83 - 3*t^6. + (g2*t^6.)/(g1*g3^2) + (g1*g3^2*t^6.)/g2 + t^6.17/g2^3 + g2^3*g3^3*t^6.17 + 2*g3^3*t^6.34 + (g2^2*t^6.44)/(g1^2*g3^9) + (g2*t^6.44)/(g1*g3^7) + (2*t^6.44)/g3^5 + (g1*t^6.44)/(g2*g3^3) + (g1^2*t^6.44)/(g2^2*g3) + t^6.61/(g1^2*g2*g3^9) + g1^2*g2*g3^2*t^6.61 + 3*g3^6*t^6.68 + (2*g1*t^6.77)/g2 + (2*g2*t^6.77)/(g1*g3^4) + (2*t^6.77)/g3^2 - t^6.94/(g1^2*g2*g3^6) + (2*t^6.94)/(g1*g2^2*g3^4) + 2*g1*g2^2*g3^3*t^6.94 - g1^2*g2*g3^5*t^6.94 + g3^9*t^7.02 + (2*g2*t^7.11)/(g1*g3) + g3*t^7.11 + (2*g1*g3^3*t^7.11)/g2 + (g2*t^7.21)/(g1*g3^9) + t^7.21/g3^7 + (g1*t^7.21)/(g2*g3^5) + g3^12*t^7.35 + g1^2*g2*t^7.38 + t^7.38/(g1^2*g2*g3^11) + t^7.38/(g1*g2^2*g3^9) + t^7.38/(g2^3*g3^7) + (g2^3*t^7.38)/g3^4 + (g1*g2^2*t^7.38)/g3^2 + 2*g3^4*t^7.45 + (3*g1^2*t^7.55)/g2^2 + (3*g2^2*t^7.55)/(g1^2*g3^8) + (g2*t^7.55)/(g1*g3^6) + (5*t^7.55)/g3^4 + (g1*t^7.55)/(g2*g3^2) + g3^15*t^7.69 + (2*t^7.72)/(g1^2*g2*g3^8) + 2*g1^2*g2*g3^3*t^7.72 + 2*g3^7*t^7.79 + (3*g2*t^7.89)/(g1*g3^3) + t^7.89/g3 + (3*g1*g3*t^7.89)/g2 + (g2^3*t^7.98)/(g1^3*g3^15) + (g2^2*t^7.98)/(g1^2*g3^13) + (2*g2*t^7.98)/(g1*g3^11) + (2*t^7.98)/g3^9 + (2*g1*t^7.98)/(g2*g3^7) + (g1^2*t^7.98)/(g2^2*g3^5) + (g1^3*t^7.98)/(g2^3*g3^3) - t^8.06/(g1^2*g2*g3^5) + t^8.06/(g1*g2^2*g3^3) - t^8.06/(g2^3*g3) - g2^3*g3^2*t^8.06 + g1*g2^2*g3^4*t^8.06 - g1^2*g2*g3^6*t^8.06 + g3^10*t^8.13 + g1^3*t^8.15 + t^8.15/(g1^3*g3^15) + t^8.15/(g1^2*g2*g3^13) + t^8.15/(g1*g2^2*g3^11) + (g1*g2^2*t^8.15)/g3^4 + (g1^2*g2*t^8.15)/g3^2 + (g2*t^8.23)/g1 + (g1*g3^4*t^8.23)/g2 + (g2^2*t^8.32)/(g1^2*g3^10) + (3*g2*t^8.32)/(g1*g3^8) + (2*t^8.32)/g3^6 + (3*g1*t^8.32)/(g2*g3^4) + (g1^2*t^8.32)/(g2^2*g3^2) + (g3^2*t^8.39)/g2^3 + g2^3*g3^5*t^8.39 + t^8.49/(g1^3*g3^12) + (2*t^8.49)/(g1^2*g2*g3^10) + (2*t^8.49)/(g2^3*g3^6) + (2*g2^3*t^8.49)/g3^3 + 2*g1^2*g2*g3*t^8.49 + g1^3*g3^3*t^8.49 + (2*g2^2*t^8.66)/(g1^2*g3^7) - (3*g2*t^8.66)/(g1*g3^5) + (3*t^8.66)/g3^3 - (3*g1*t^8.66)/(g2*g3) + (2*g1^2*g3*t^8.66)/g2^2 + (g3^5*t^8.73)/g2^3 + g2^3*g3^8*t^8.73 - t^8.83/(g1^3*g3^9) + t^8.83/(g1^2*g2*g3^7) + t^8.83/(g1*g2^2*g3^5) + (g2^4*t^8.83)/(g1*g3^2) + (g1*t^8.83)/(g2^4*g3) + g1*g2^2*g3^2*t^8.83 + g1^2*g2*g3^4*t^8.83 - g1^3*g3^6*t^8.83 + 3*g3^8*t^8.9 - (g3*t^4.11)/y - (g3^2*t^5.23)/y - (g3^3*t^6.34)/y - (g3^6*t^6.68)/y - (g1*t^6.77)/(g2*y) - (g2*t^6.77)/(g1*g3^4*y) - t^6.77/(g3^2*y) - (g3^4*t^7.45)/y + t^7.89/(g3*y) + (g2*t^8.23)/(g1*y) + (g1*g3^4*t^8.23)/(g2*y) + (g2*t^8.32)/(g1*g3^8*y) + t^8.32/(g3^6*y) + (g1*t^8.32)/(g2*g3^4*y) + (g2*t^8.66)/(g1*g3^5*y) + t^8.66/(g3^3*y) + (g1*t^8.66)/(g2*g3*y) - (g3^8*t^8.9)/y - g3*t^4.11*y - g3^2*t^5.23*y - g3^3*t^6.34*y - g3^6*t^6.68*y - (g1*t^6.77*y)/g2 - (g2*t^6.77*y)/(g1*g3^4) - (t^6.77*y)/g3^2 - g3^4*t^7.45*y + (t^7.89*y)/g3 + (g2*t^8.23*y)/g1 + (g1*g3^4*t^8.23*y)/g2 + (g2*t^8.32*y)/(g1*g3^8) + (t^8.32*y)/g3^6 + (g1*t^8.32*y)/(g2*g3^4) + (g2*t^8.66*y)/(g1*g3^5) + (t^8.66*y)/g3^3 + (g1*t^8.66*y)/(g2*g3) - g3^8*t^8.9*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57480 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4964 | 1.7271 | 0.8664 | [X:[], M:[0.9906, 0.9803, 0.7021], q:[0.5099, 0.4807], qb:[0.5099, 0.4807], phi:[0.3365]] | t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.04 + t^4.07 + t^4.13 + t^4.21 + 2*t^4.9 + t^4.96 + 6*t^4.99 + t^5.05 + 4*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 6*t^5.94 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |