Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58000 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4456 | 1.6995 | 0.8506 | [X:[], M:[0.6793, 1.2345, 0.8517], q:[0.469, 0.3828], qb:[0.469, 0.3828], phi:[0.3828]] | [X:[], M:[[7, 0, 7], [-2, 0, -2], [-3, 0, -3]], q:[[-8, -1, -8], [2, 0, 0]], qb:[[0, 1, 0], [0, 0, 2]], phi:[[1, 0, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 4 | t^2.04 + t^2.3 + 3*t^2.56 + t^2.81 + t^3.44 + 3*t^3.7 + t^4.08 + t^4.33 + 5*t^4.59 + 8*t^4.85 + 10*t^5.11 + 3*t^5.37 + t^5.48 + t^5.63 + 2*t^5.74 + 4*t^6. + t^6.11 + 10*t^6.26 + t^6.37 + 3*t^6.52 + 5*t^6.63 + 11*t^6.89 + 19*t^7.15 + 27*t^7.41 + t^7.52 + 28*t^7.67 + 2*t^7.78 + 10*t^7.92 + t^8.15 + 3*t^8.18 + 6*t^8.3 + t^8.41 + t^8.44 + 11*t^8.56 + 5*t^8.67 + 24*t^8.81 + 11*t^8.93 - t^4.15/y - t^5.3/y - t^6.19/y - t^6.44/y - (3*t^6.7)/y - t^6.96/y + (2*t^7.59)/y + t^7.85/y + (4*t^8.11)/y - t^8.22/y + (3*t^8.37)/y - t^8.74/y - t^4.15*y - t^5.3*y - t^6.19*y - t^6.44*y - 3*t^6.7*y - t^6.96*y + 2*t^7.59*y + t^7.85*y + 4*t^8.11*y - t^8.22*y + 3*t^8.37*y - t^8.74*y | g1^7*g3^7*t^2.04 + g1^2*g3^2*t^2.3 + g1^2*g2*t^2.56 + t^2.56/(g1^8*g2*g3^6) + t^2.56/(g1^3*g3^3) + t^2.81/(g1^8*g3^8) + g1^3*g3^3*t^3.44 + t^3.7/(g1^7*g2*g3^5) + t^3.7/(g1^2*g3^2) + g1^3*g2*g3*t^3.7 + g1^14*g3^14*t^4.08 + g1^9*g3^9*t^4.33 + (g3*t^4.59)/(g1*g2) + 3*g1^4*g3^4*t^4.59 + g1^9*g2*g3^7*t^4.59 + t^4.85/(g1^3*g2*g3^7) + (2*t^4.85)/(g1^6*g2*g3^4) + (2*t^4.85)/(g1*g3) + 2*g1^4*g2*g3^2*t^4.85 + g1*g2*g3^5*t^4.85 + g1^4*g2^2*t^5.11 + t^5.11/(g1^13*g2^2*g3^15) + t^5.11/(g1^16*g2^2*g3^12) + t^5.11/(g1^11*g2*g3^9) + (4*t^5.11)/(g1^6*g3^6) + (g2*t^5.11)/(g1*g3^3) + g1*g2^2*g3^3*t^5.11 + t^5.37/(g1^16*g2*g3^14) + t^5.37/(g1^11*g3^11) + (g2*t^5.37)/(g1^6*g3^8) + g1^10*g3^10*t^5.48 + t^5.63/(g1^16*g3^16) + 2*g1^5*g3^5*t^5.74 - 2*t^6. + t^6./(g1^2*g2*g3^6) + (2*t^6.)/(g1^5*g2*g3^3) + 2*g1^5*g2*g3^3*t^6. + g1^2*g2*g3^6*t^6. + g1^21*g3^21*t^6.11 + t^6.26/(g1^12*g2^2*g3^14) + t^6.26/(g1^15*g2^2*g3^11) + t^6.26/(g1^10*g2*g3^8) + (4*t^6.26)/(g1^5*g3^5) + (g2*t^6.26)/g3^2 + g1^5*g2^2*g3*t^6.26 + g1^2*g2^2*g3^4*t^6.26 + g1^16*g3^16*t^6.37 + t^6.52/(g1^15*g2*g3^13) + t^6.52/(g1^10*g3^10) + (g2*t^6.52)/(g1^5*g3^7) + (g1^6*g3^8*t^6.63)/g2 + 3*g1^11*g3^11*t^6.63 + g1^16*g2*g3^14*t^6.63 + (g1^4*t^6.89)/g2 + g1^9*g3^3*t^6.89 + (g1*g3^3*t^6.89)/g2 + 5*g1^6*g3^6*t^6.89 + g1^3*g3^9*t^6.89 + g1^11*g2*g3^9*t^6.89 + g1^8*g2*g3^12*t^6.89 + t^7.15/(g1^9*g2^2*g3^5) + (2*t^7.15)/(g1*g2*g3^5) + (5*t^7.15)/(g1^4*g2*g3^2) + 3*g1*g3*t^7.15 + 5*g1^6*g2*g3^4*t^7.15 + 2*g1^3*g2*g3^7*t^7.15 + g1^11*g2^2*g3^7*t^7.15 + (3*t^7.41)/(g1^11*g2^2*g3^13) + (3*t^7.41)/(g1^14*g2^2*g3^10) + t^7.41/(g1*g3^7) + (2*t^7.41)/(g1^9*g2*g3^7) + (9*t^7.41)/(g1^4*g3^4) + t^7.41/(g1^7*g3) + (2*g1*g2*t^7.41)/g3 + 3*g1^6*g2^2*g3^2*t^7.41 + 3*g1^3*g2^2*g3^5*t^7.41 + g1^17*g3^17*t^7.52 + (g2^2*t^7.67)/g1^2 + g1^6*g2^3*t^7.67 + (2*t^7.67)/(g1^21*g2^3*g3^21) + t^7.67/(g1^24*g2^3*g3^18) + t^7.67/(g1^16*g2^2*g3^18) + t^7.67/(g1^19*g2^2*g3^15) + (2*t^7.67)/(g1^11*g2*g3^15) + (5*t^7.67)/(g1^14*g2*g3^12) + (4*t^7.67)/(g1^9*g3^9) + (5*g2*t^7.67)/(g1^4*g3^6) + (2*g2*t^7.67)/(g1^7*g3^3) + (g1*g2^2*t^7.67)/g3^3 + 2*g1^3*g2^3*g3^3*t^7.67 + 2*g1^12*g3^12*t^7.78 + t^7.92/(g1^21*g2^2*g3^23) + t^7.92/(g1^24*g2^2*g3^20) + t^7.92/(g1^19*g2*g3^17) + (4*t^7.92)/(g1^14*g3^14) + (g2*t^7.92)/(g1^9*g3^11) + (g2^2*t^7.92)/(g1^4*g3^8) + (g2^2*t^7.92)/(g1^7*g3^5) + g1^28*g3^28*t^8.15 + t^8.18/(g1^24*g2*g3^22) + t^8.18/(g1^19*g3^19) + (g2*t^8.18)/(g1^14*g3^16) - t^8.3/(g1^5*g2^2*g3^7) + (2*t^8.3)/(g2*g3^4) - (g1^5*t^8.3)/g3 + (4*t^8.3)/(g1^3*g2*g3) - 2*g1^2*g3^2*t^8.3 - (g3^5*t^8.3)/g1 + 4*g1^7*g2*g3^5*t^8.3 + 2*g1^4*g2*g3^8*t^8.3 - g1^9*g2^2*g3^11*t^8.3 + g1^23*g3^23*t^8.41 + t^8.44/(g1^24*g3^24) + (2*t^8.56)/g1^6 - 3*g1^2*g2*t^8.56 - t^8.56/(g1^15*g2^3*g3^15) + (3*t^8.56)/(g1^10*g2^2*g3^12) + (3*t^8.56)/(g1^13*g2^2*g3^9) - t^8.56/(g1^5*g2*g3^9) + (2*t^8.56)/g3^6 - (3*t^8.56)/(g1^8*g2*g3^6) + (5*t^8.56)/(g1^3*g3^3) - (g2*g3^3*t^8.56)/g1 + 3*g1^7*g2^2*g3^3*t^8.56 + 3*g1^4*g2^2*g3^6*t^8.56 - g1^9*g2^3*g3^9*t^8.56 + (g1^13*g3^15*t^8.67)/g2 + 3*g1^18*g3^18*t^8.67 + g1^23*g2*g3^21*t^8.67 + (2*t^8.81)/(g1^20*g2^3*g3^20) + t^8.81/(g1^23*g2^3*g3^17) + t^8.81/(g1^18*g2^2*g3^14) + (2*t^8.81)/(g1^10*g2*g3^14) + (6*t^8.81)/(g1^13*g2*g3^11) + (6*g2*t^8.81)/(g1^3*g3^5) + (2*g2*t^8.81)/(g1^6*g3^2) + (g1^2*g2^2*t^8.81)/g3^2 + g1^7*g2^3*g3*t^8.81 + 2*g1^4*g2^3*g3^4*t^8.81 + (g1^11*g3^7*t^8.93)/g2 + g1^16*g3^10*t^8.93 + (g1^8*g3^10*t^8.93)/g2 + 5*g1^13*g3^13*t^8.93 + g1^10*g3^16*t^8.93 + g1^18*g2*g3^16*t^8.93 + g1^15*g2*g3^19*t^8.93 - (g1*g3*t^4.15)/y - (g1^2*g3^2*t^5.3)/y - (g1^8*g3^8*t^6.19)/y - (g1^3*g3^3*t^6.44)/y - t^6.7/(g1^7*g2*g3^5*y) - t^6.7/(g1^2*g3^2*y) - (g1^3*g2*g3*t^6.7)/y - t^6.96/(g1^7*g3^7*y) + (g3*t^7.59)/(g1*g2*y) + (g1^9*g2*g3^7*t^7.59)/y + t^7.85/(g1*g3*y) + t^8.11/(g1^11*g2*g3^9*y) + (2*t^8.11)/(g1^6*g3^6*y) + (g2*t^8.11)/(g1*g3^3*y) - (g1^15*g3^15*t^8.22)/y + t^8.37/(g1^16*g2*g3^14*y) + t^8.37/(g1^11*g3^11*y) + (g2*t^8.37)/(g1^6*g3^8*y) - (g1^5*g3^5*t^8.74)/y - g1*g3*t^4.15*y - g1^2*g3^2*t^5.3*y - g1^8*g3^8*t^6.19*y - g1^3*g3^3*t^6.44*y - (t^6.7*y)/(g1^7*g2*g3^5) - (t^6.7*y)/(g1^2*g3^2) - g1^3*g2*g3*t^6.7*y - (t^6.96*y)/(g1^7*g3^7) + (g3*t^7.59*y)/(g1*g2) + g1^9*g2*g3^7*t^7.59*y + (t^7.85*y)/(g1*g3) + (t^8.11*y)/(g1^11*g2*g3^9) + (2*t^8.11*y)/(g1^6*g3^6) + (g2*t^8.11*y)/(g1*g3^3) - g1^15*g3^15*t^8.22*y + (t^8.37*y)/(g1^16*g2*g3^14) + (t^8.37*y)/(g1^11*g3^11) + (g2*t^8.37*y)/(g1^6*g3^8) - g1^5*g3^5*t^8.74*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57310 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4951 | 1.7263 | 0.8661 | [M:[0.6749, 1.3251, 0.6749], q:[0.4938, 0.4938], qb:[0.4938, 0.4938], phi:[0.3375]] | 2*t^2.025 + 4*t^2.963 + t^3.037 + 3*t^3.975 + 3*t^4.049 + 12*t^4.988 + 2*t^5.062 + 4*t^5.457 + 10*t^5.926 + 2*t^6. - t^4.012/y - t^5.025/y - t^4.012*y - t^5.025*y | detail |