Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57971 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4974 1.7349 0.8631 [X:[], M:[0.6911, 1.3089, 0.9634, 0.6911], q:[0.4817, 0.4817], qb:[0.4817, 0.4817], phi:[0.3455]] [X:[], M:[[-5, 1, -5, 1], [2, 2, 2, 2], [3, 3, 3, 3], [1, -5, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}M_{1}M_{2}$, ${ }M_{2}M_{4}$ -2 2*t^2.07 + 5*t^2.89 + 3*t^3.93 + 3*t^4.15 + 14*t^4.96 + 4*t^5.37 + 15*t^5.78 - 2*t^6. + 4*t^6.22 + 4*t^6.41 + 15*t^6.82 + 16*t^7.04 + 12*t^7.45 + 51*t^7.85 - 13*t^8.07 + 20*t^8.26 + 5*t^8.29 - 8*t^8.48 + 35*t^8.67 - 3*t^8.89 - t^4.04/y - t^5.07/y - (2*t^6.11)/y - (5*t^6.93)/y - t^7.15/y + (7*t^7.96)/y - (3*t^8.18)/y + (10*t^8.78)/y - t^4.04*y - t^5.07*y - 2*t^6.11*y - 5*t^6.93*y - t^7.15*y + 7*t^7.96*y - 3*t^8.18*y + 10*t^8.78*y (g1*g3*t^2.07)/(g2^5*g4^5) + (g2*g4*t^2.07)/(g1^5*g3^5) + g1^6*g3^6*t^2.89 + g2^6*g3^6*t^2.89 + g1^3*g2^3*g3^3*g4^3*t^2.89 + g1^6*g4^6*t^2.89 + g2^6*g4^6*t^2.89 + (g2^5*g3^5*t^3.93)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.93 + (g1^5*g4^5*t^3.93)/(g2*g3) + (g1^2*g3^2*t^4.15)/(g2^10*g4^10) + t^4.15/(g1^4*g2^4*g3^4*g4^4) + (g2^2*g4^2*t^4.15)/(g1^10*g3^10) + (g1^7*g3^7*t^4.96)/(g2^5*g4^5) + (g1*g2*g3^7*t^4.96)/g4^5 + (2*g1^4*g3^4*t^4.96)/(g2^2*g4^2) + (g2^4*g3^4*t^4.96)/(g1^2*g4^2) + (g1^7*g3*g4*t^4.96)/g2^5 + 2*g1*g2*g3*g4*t^4.96 + (g2^7*g3*g4*t^4.96)/g1^5 + (g1^4*g4^4*t^4.96)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.96)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.96)/g3^5 + (g2^7*g4^7*t^4.96)/(g1^5*g3^5) + (g1^11*g2^5*t^5.37)/(g3*g4) + (g1^5*g2^11*t^5.37)/(g3*g4) + (g3^11*g4^5*t^5.37)/(g1*g2) + (g3^5*g4^11*t^5.37)/(g1*g2) + g1^12*g3^12*t^5.78 + g1^6*g2^6*g3^12*t^5.78 + g2^12*g3^12*t^5.78 + g1^9*g2^3*g3^9*g4^3*t^5.78 + g1^3*g2^9*g3^9*g4^3*t^5.78 + g1^12*g3^6*g4^6*t^5.78 + 3*g1^6*g2^6*g3^6*g4^6*t^5.78 + g2^12*g3^6*g4^6*t^5.78 + g1^9*g2^3*g3^3*g4^9*t^5.78 + g1^3*g2^9*g3^3*g4^9*t^5.78 + g1^12*g4^12*t^5.78 + g1^6*g2^6*g4^12*t^5.78 + g2^12*g4^12*t^5.78 - 4*t^6. + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) + (g1^3*g3^3*t^6.22)/(g2^15*g4^15) + t^6.22/(g1^3*g2^9*g3^3*g4^9) + t^6.22/(g1^9*g2^3*g3^9*g4^3) + (g2^3*g4^3*t^6.22)/(g1^15*g3^15) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g1^4*g2^10*t^6.41)/(g3^2*g4^2) + (g3^10*g4^4*t^6.41)/(g1^2*g2^2) + (g3^4*g4^10*t^6.41)/(g1^2*g2^2) + (g1^5*g2^5*g3^11*t^6.82)/g4 + (g2^11*g3^11*t^6.82)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.82 + 2*g1^2*g2^8*g3^8*g4^2*t^6.82 + (g1^11*g3^5*g4^5*t^6.82)/g2 + 3*g1^5*g2^5*g3^5*g4^5*t^6.82 + (g2^11*g3^5*g4^5*t^6.82)/g1 + 2*g1^8*g2^2*g3^2*g4^8*t^6.82 + g1^2*g2^8*g3^2*g4^8*t^6.82 + (g1^11*g4^11*t^6.82)/(g2*g3) + (g1^5*g2^5*g4^11*t^6.82)/g3 + (g1^8*g3^8*t^7.04)/(g2^10*g4^10) + (g1^2*g3^8*t^7.04)/(g2^4*g4^10) + (2*g1^5*g3^5*t^7.04)/(g2^7*g4^7) + (g1^8*g3^2*t^7.04)/(g2^10*g4^4) + (2*g1^2*g3^2*t^7.04)/(g2^4*g4^4) + (g2^2*g3^2*t^7.04)/(g1^4*g4^4) + (g1^2*g4^2*t^7.04)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.04)/(g1^4*g3^4) + (g2^8*g4^2*t^7.04)/(g1^10*g3^4) + (2*g2^5*g4^5*t^7.04)/(g1^7*g3^7) + (g2^2*g4^8*t^7.04)/(g1^4*g3^10) + (g2^8*g4^8*t^7.04)/(g1^10*g3^10) + (g2^12*t^7.45)/g3^6 + (g3^12*t^7.45)/g2^6 + (g1^12*t^7.45)/g4^6 + (g1^15*t^7.45)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.45)/(g3^3*g4^3) + (g1^3*g2^9*t^7.45)/(g3^3*g4^3) + (g2^15*t^7.45)/(g1^3*g3^3*g4^3) + (g3^15*t^7.45)/(g1^3*g2^3*g4^3) + (g3^9*g4^3*t^7.45)/(g1^3*g2^3) + (g3^3*g4^9*t^7.45)/(g1^3*g2^3) + (g4^12*t^7.45)/g1^6 + (g4^15*t^7.45)/(g1^3*g2^3*g3^3) + (g1^13*g3^13*t^7.85)/(g2^5*g4^5) + (g1^7*g2*g3^13*t^7.85)/g4^5 + (g1*g2^7*g3^13*t^7.85)/g4^5 + (2*g1^10*g3^10*t^7.85)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.85)/g4^2 + (2*g2^10*g3^10*t^7.85)/(g1^2*g4^2) + (g1^13*g3^7*g4*t^7.85)/g2^5 + 4*g1^7*g2*g3^7*g4*t^7.85 + 3*g1*g2^7*g3^7*g4*t^7.85 + (g2^13*g3^7*g4*t^7.85)/g1^5 + (3*g1^10*g3^4*g4^4*t^7.85)/g2^2 + 7*g1^4*g2^4*g3^4*g4^4*t^7.85 + (3*g2^10*g3^4*g4^4*t^7.85)/g1^2 + (g1^13*g3*g4^7*t^7.85)/g2^5 + 3*g1^7*g2*g3*g4^7*t^7.85 + 4*g1*g2^7*g3*g4^7*t^7.85 + (g2^13*g3*g4^7*t^7.85)/g1^5 + (2*g1^10*g4^10*t^7.85)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.85)/g3^2 + (2*g2^10*g4^10*t^7.85)/(g1^2*g3^2) + (g1^7*g2*g4^13*t^7.85)/g3^5 + (g1*g2^7*g4^13*t^7.85)/g3^5 + (g2^13*g4^13*t^7.85)/(g1^5*g3^5) + (g1^4*g3^4*t^8.07)/(g2^8*g4^8) - (g3^4*t^8.07)/(g1^2*g2^2*g4^8) - (4*g1*g3*t^8.07)/(g2^5*g4^5) - (g2*g3*t^8.07)/(g1^5*g4^5) - (g1^4*t^8.07)/(g2^8*g3^2*g4^2) - t^8.07/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.07)/(g1^8*g3^2*g4^2) - (g1*g4*t^8.07)/(g2^5*g3^5) - (4*g2*g4*t^8.07)/(g1^5*g3^5) - (g4^4*t^8.07)/(g1^2*g2^2*g3^8) + (g2^4*g4^4*t^8.07)/(g1^8*g3^8) + (g1^17*g2^5*g3^5*t^8.26)/g4 + (2*g1^11*g2^11*g3^5*t^8.26)/g4 + (g1^5*g2^17*g3^5*t^8.26)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.26 + g1^8*g2^14*g3^2*g4^2*t^8.26 + (g1^17*g2^5*g4^5*t^8.26)/g3 + (2*g1^11*g2^11*g4^5*t^8.26)/g3 + (g1^5*g2^17*g4^5*t^8.26)/g3 + (g1^5*g3^17*g4^5*t^8.26)/g2 + (g2^5*g3^17*g4^5*t^8.26)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.26 + (2*g1^5*g3^11*g4^11*t^8.26)/g2 + (2*g2^5*g3^11*g4^11*t^8.26)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.26 + (g1^5*g3^5*g4^17*t^8.26)/g2 + (g2^5*g3^5*g4^17*t^8.26)/g1 + (g1^4*g3^4*t^8.29)/(g2^20*g4^20) + t^8.29/(g1^2*g2^14*g3^2*g4^14) + t^8.29/(g1^8*g2^8*g3^8*g4^8) + t^8.29/(g1^14*g2^2*g3^14*g4^2) + (g2^4*g4^4*t^8.29)/(g1^20*g3^20) - (g1^5*g2^5*t^8.48)/(g3*g4^7) - (g2^11*t^8.48)/(g1*g3*g4^7) - (g1^11*t^8.48)/(g2*g3^7*g4) - (g1^5*g2^5*t^8.48)/(g3^7*g4) - (g3^11*t^8.48)/(g1^7*g2*g4) - (g3^5*g4^5*t^8.48)/(g1*g2^7) - (g3^5*g4^5*t^8.48)/(g1^7*g2) - (g4^11*t^8.48)/(g1*g2^7*g3) + g1^18*g3^18*t^8.67 + g1^12*g2^6*g3^18*t^8.67 + g1^6*g2^12*g3^18*t^8.67 + g2^18*g3^18*t^8.67 + g1^15*g2^3*g3^15*g4^3*t^8.67 + g1^9*g2^9*g3^15*g4^3*t^8.67 + g1^3*g2^15*g3^15*g4^3*t^8.67 + g1^18*g3^12*g4^6*t^8.67 + 3*g1^12*g2^6*g3^12*g4^6*t^8.67 + 3*g1^6*g2^12*g3^12*g4^6*t^8.67 + g2^18*g3^12*g4^6*t^8.67 + g1^15*g2^3*g3^9*g4^9*t^8.67 + 3*g1^9*g2^9*g3^9*g4^9*t^8.67 + g1^3*g2^15*g3^9*g4^9*t^8.67 + g1^18*g3^6*g4^12*t^8.67 + 3*g1^12*g2^6*g3^6*g4^12*t^8.67 + 3*g1^6*g2^12*g3^6*g4^12*t^8.67 + g2^18*g3^6*g4^12*t^8.67 + g1^15*g2^3*g3^3*g4^15*t^8.67 + g1^9*g2^9*g3^3*g4^15*t^8.67 + g1^3*g2^15*g3^3*g4^15*t^8.67 + g1^18*g4^18*t^8.67 + g1^12*g2^6*g4^18*t^8.67 + g1^6*g2^12*g4^18*t^8.67 + g2^18*g4^18*t^8.67 - 3*g1^6*g3^6*t^8.89 - 4*g2^6*g3^6*t^8.89 + (g1^9*g3^9*t^8.89)/(g2^3*g4^3) + (2*g1^3*g2^3*g3^9*t^8.89)/g4^3 + (g2^9*g3^9*t^8.89)/(g1^3*g4^3) + (2*g1^9*g3^3*g4^3*t^8.89)/g2^3 - g1^3*g2^3*g3^3*g4^3*t^8.89 + (2*g2^9*g3^3*g4^3*t^8.89)/g1^3 - 4*g1^6*g4^6*t^8.89 - 3*g2^6*g4^6*t^8.89 + (g1^9*g4^9*t^8.89)/(g2^3*g3^3) + (2*g1^3*g2^3*g4^9*t^8.89)/g3^3 + (g2^9*g4^9*t^8.89)/(g1^3*g3^3) - t^4.04/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.11/(g1^6*g3^6*y) - t^6.11/(g2^6*g4^6*y) - (g1^5*g3^5*t^6.93)/(g2*g4*y) - (g2^5*g3^5*t^6.93)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g1^5*g4^5*t^6.93)/(g2*g3*y) - (g2^5*g4^5*t^6.93)/(g1*g3*y) - t^7.15/(g1*g2^7*g3*g4^7*y) + t^7.15/(g1^4*g2^4*g3^4*g4^4*y) - t^7.15/(g1^7*g2*g3^7*g4*y) + (g1^7*g3^7*t^7.96)/(g2^5*g4^5*y) + (g1*g2*g3^7*t^7.96)/(g4^5*y) + (g1^4*g3^4*t^7.96)/(g2^2*g4^2*y) - (g2^4*g3^4*t^7.96)/(g1^2*g4^2*y) + (g1^7*g3*g4*t^7.96)/(g2^5*y) + (g1*g2*g3*g4*t^7.96)/y + (g2^7*g3*g4*t^7.96)/(g1^5*y) - (g1^4*g4^4*t^7.96)/(g2^2*g3^2*y) + (g2^4*g4^4*t^7.96)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.96)/(g3^5*y) + (g2^7*g4^7*t^7.96)/(g1^5*g3^5*y) - (g1*g3*t^8.18)/(g2^11*g4^11*y) - t^8.18/(g1^5*g2^5*g3^5*g4^5*y) - (g2*g4*t^8.18)/(g1^11*g3^11*y) + (g1^6*g2^6*g3^12*t^8.78)/y + (g1^9*g2^3*g3^9*g4^3*t^8.78)/y + (g1^3*g2^9*g3^9*g4^3*t^8.78)/y + (g1^12*g3^6*g4^6*t^8.78)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.78)/y + (g2^12*g3^6*g4^6*t^8.78)/y + (g1^9*g2^3*g3^3*g4^9*t^8.78)/y + (g1^3*g2^9*g3^3*g4^9*t^8.78)/y + (g1^6*g2^6*g4^12*t^8.78)/y - (t^4.04*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.11*y)/(g1^6*g3^6) - (t^6.11*y)/(g2^6*g4^6) - (g1^5*g3^5*t^6.93*y)/(g2*g4) - (g2^5*g3^5*t^6.93*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g1^5*g4^5*t^6.93*y)/(g2*g3) - (g2^5*g4^5*t^6.93*y)/(g1*g3) - (t^7.15*y)/(g1*g2^7*g3*g4^7) + (t^7.15*y)/(g1^4*g2^4*g3^4*g4^4) - (t^7.15*y)/(g1^7*g2*g3^7*g4) + (g1^7*g3^7*t^7.96*y)/(g2^5*g4^5) + (g1*g2*g3^7*t^7.96*y)/g4^5 + (g1^4*g3^4*t^7.96*y)/(g2^2*g4^2) - (g2^4*g3^4*t^7.96*y)/(g1^2*g4^2) + (g1^7*g3*g4*t^7.96*y)/g2^5 + g1*g2*g3*g4*t^7.96*y + (g2^7*g3*g4*t^7.96*y)/g1^5 - (g1^4*g4^4*t^7.96*y)/(g2^2*g3^2) + (g2^4*g4^4*t^7.96*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.96*y)/g3^5 + (g2^7*g4^7*t^7.96*y)/(g1^5*g3^5) - (g1*g3*t^8.18*y)/(g2^11*g4^11) - (t^8.18*y)/(g1^5*g2^5*g3^5*g4^5) - (g2*g4*t^8.18*y)/(g1^11*g3^11) + g1^6*g2^6*g3^12*t^8.78*y + g1^9*g2^3*g3^9*g4^3*t^8.78*y + g1^3*g2^9*g3^9*g4^3*t^8.78*y + g1^12*g3^6*g4^6*t^8.78*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.78*y + g2^12*g3^6*g4^6*t^8.78*y + g1^9*g2^3*g3^3*g4^9*t^8.78*y + g1^3*g2^9*g3^3*g4^9*t^8.78*y + g1^6*g2^6*g4^12*t^8.78*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57306 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4768 1.696 0.8707 [M:[0.6885, 1.307, 0.9606], q:[0.4825, 0.478], qb:[0.4825, 0.478], phi:[0.3465]] t^2.065 + t^2.868 + 3*t^2.882 + t^2.895 + t^3.908 + 3*t^3.921 + t^4.131 + t^4.934 + 4*t^4.947 + 3*t^4.961 + t^4.974 + 2*t^5.355 + 2*t^5.369 + t^5.736 + 3*t^5.75 + 7*t^5.763 + 3*t^5.777 + t^5.79 + t^5.973 + t^5.986 - 4*t^6. - t^4.039/y - t^5.079/y - t^4.039*y - t^5.079*y detail