Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57972 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4974 1.7357 0.8627 [X:[], M:[0.6873, 1.3084, 0.9626, 0.6873], q:[0.4813, 0.4813], qb:[0.4856, 0.477], phi:[0.3458]] [X:[], M:[[-5, 1, -5, 1], [2, 2, 2, 2], [3, 3, 3, 3], [1, -5, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{2}$ ${}$ -6 2*t^2.06 + 2*t^2.88 + t^2.89 + 2*t^2.9 + 2*t^3.91 + t^3.93 + 3*t^4.12 + 4*t^4.94 + 4*t^4.95 + 4*t^4.96 + 2*t^4.98 + t^5.36 + 2*t^5.37 + t^5.38 + 3*t^5.75 + 2*t^5.76 + 5*t^5.78 + 2*t^5.79 + 3*t^5.8 + 3*t^5.97 + 2*t^5.99 - 6*t^6. - t^6.03 + 4*t^6.19 + t^6.39 + 2*t^6.41 + t^6.42 + 4*t^6.79 + 4*t^6.8 + 5*t^6.81 + 2*t^6.83 + 6*t^7. + 6*t^7.01 + 6*t^7.02 - t^7.04 - t^7.06 + t^7.41 + 2*t^7.42 + 4*t^7.43 + 4*t^7.44 + t^7.48 + 6*t^7.81 + 11*t^7.82 + 12*t^7.84 + 12*t^7.85 + 6*t^7.86 + 4*t^7.88 + 4*t^8.04 + 2*t^8.05 - 12*t^8.06 - 4*t^8.07 - 2*t^8.09 - t^8.1 + 2*t^8.23 + 5*t^8.24 + 5*t^8.25 + 6*t^8.26 + 5*t^8.27 + 2*t^8.28 - 2*t^8.48 - 4*t^8.49 - 2*t^8.51 + 4*t^8.63 + 3*t^8.64 + 8*t^8.65 + 5*t^8.66 + 8*t^8.68 + 3*t^8.69 + 4*t^8.7 + 6*t^8.85 + 11*t^8.86 - 4*t^8.88 + t^8.89 - 14*t^8.9 - t^8.91 - 2*t^8.93 - t^4.04/y - t^5.07/y - (2*t^6.1)/y - (2*t^6.91)/y - t^6.93/y - (2*t^6.94)/y + t^7.12/y - (2*t^7.14)/y + (4*t^7.94)/y + (3*t^7.96)/y - (3*t^8.16)/y + t^8.75/y + (2*t^8.76)/y + (4*t^8.78)/y + (2*t^8.79)/y + t^8.8/y - (2*t^8.99)/y - t^4.04*y - t^5.07*y - 2*t^6.1*y - 2*t^6.91*y - t^6.93*y - 2*t^6.94*y + t^7.12*y - 2*t^7.14*y + 4*t^7.94*y + 3*t^7.96*y - 3*t^8.16*y + t^8.75*y + 2*t^8.76*y + 4*t^8.78*y + 2*t^8.79*y + t^8.8*y - 2*t^8.99*y (g1*g4*t^2.06)/(g2^5*g3^5) + (g2*g4*t^2.06)/(g1^5*g3^5) + g1^6*g4^6*t^2.88 + g2^6*g4^6*t^2.88 + g1^3*g2^3*g3^3*g4^3*t^2.89 + g1^6*g3^6*t^2.9 + g2^6*g3^6*t^2.9 + (g1^5*g4^5*t^3.91)/(g2*g3) + (g2^5*g4^5*t^3.91)/(g1*g3) + g1^2*g2^2*g3^2*g4^2*t^3.93 + (g1^2*g4^2*t^4.12)/(g2^10*g3^10) + (g4^2*t^4.12)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.12)/(g1^10*g3^10) + (g1^7*g4^7*t^4.94)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.94)/g3^5 + (g2^7*g4^7*t^4.94)/(g1^5*g3^5) + (2*g1^4*g4^4*t^4.95)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.95)/(g1^2*g3^2) + (g1^7*g3*g4*t^4.96)/g2^5 + 2*g1*g2*g3*g4*t^4.96 + (g2^7*g3*g4*t^4.96)/g1^5 + (g1^4*g3^4*t^4.98)/(g2^2*g4^2) + (g2^4*g3^4*t^4.98)/(g1^2*g4^2) + (g3^5*g4^11*t^5.36)/(g1*g2) + (g1^11*g2^5*t^5.37)/(g3*g4) + (g1^5*g2^11*t^5.37)/(g3*g4) + (g3^11*g4^5*t^5.38)/(g1*g2) + g1^12*g4^12*t^5.75 + g1^6*g2^6*g4^12*t^5.75 + g2^12*g4^12*t^5.75 + g1^9*g2^3*g3^3*g4^9*t^5.76 + g1^3*g2^9*g3^3*g4^9*t^5.76 + g1^12*g3^6*g4^6*t^5.78 + 3*g1^6*g2^6*g3^6*g4^6*t^5.78 + g2^12*g3^6*g4^6*t^5.78 + g1^9*g2^3*g3^9*g4^3*t^5.79 + g1^3*g2^9*g3^9*g4^3*t^5.79 + g1^12*g3^12*t^5.8 + g1^6*g2^6*g3^12*t^5.8 + g2^12*g3^12*t^5.8 + (g4^6*t^5.97)/g3^6 + (g1^6*g4^6*t^5.97)/(g2^6*g3^6) + (g2^6*g4^6*t^5.97)/(g1^6*g3^6) + (g1^3*g4^3*t^5.99)/(g2^3*g3^3) + (g2^3*g4^3*t^5.99)/(g1^3*g3^3) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.03)/g4^6 + (g1^3*g4^3*t^6.19)/(g2^15*g3^15) + (g4^3*t^6.19)/(g1^3*g2^9*g3^15) + (g4^3*t^6.19)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.19)/(g1^15*g3^15) + (g3^4*g4^10*t^6.39)/(g1^2*g2^2) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g1^4*g2^10*t^6.41)/(g3^2*g4^2) + (g3^10*g4^4*t^6.42)/(g1^2*g2^2) + (g1^11*g4^11*t^6.79)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.79)/g3 + (g2^11*g4^11*t^6.79)/(g1*g3) + 2*g1^8*g2^2*g3^2*g4^8*t^6.8 + 2*g1^2*g2^8*g3^2*g4^8*t^6.8 + (g1^11*g3^5*g4^5*t^6.81)/g2 + 3*g1^5*g2^5*g3^5*g4^5*t^6.81 + (g2^11*g3^5*g4^5*t^6.81)/g1 + g1^8*g2^2*g3^8*g4^2*t^6.83 + g1^2*g2^8*g3^8*g4^2*t^6.83 + (g1^8*g4^8*t^7.)/(g2^10*g3^10) + (2*g1^2*g4^8*t^7.)/(g2^4*g3^10) + (2*g2^2*g4^8*t^7.)/(g1^4*g3^10) + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (2*g1^5*g4^5*t^7.01)/(g2^7*g3^7) + (2*g4^5*t^7.01)/(g1*g2*g3^7) + (2*g2^5*g4^5*t^7.01)/(g1^7*g3^7) + (g1^8*g4^2*t^7.02)/(g2^10*g3^4) + (2*g1^2*g4^2*t^7.02)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.02)/(g1^4*g3^4) + (g2^8*g4^2*t^7.02)/(g1^10*g3^4) - t^7.04/(g1*g2*g3*g4) - (g3^5*t^7.06)/(g1*g2*g4^7) + (g4^15*t^7.41)/(g1^3*g2^3*g3^3) + (g4^12*t^7.42)/g1^6 + (g4^12*t^7.42)/g2^6 + (g1^12*t^7.43)/g3^6 + (g1^6*g2^6*t^7.43)/g3^6 + (g2^12*t^7.43)/g3^6 + (g3^3*g4^9*t^7.43)/(g1^3*g2^3) + (g1^15*t^7.44)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.44)/(g3^3*g4^3) + (g1^3*g2^9*t^7.44)/(g3^3*g4^3) + (g2^15*t^7.44)/(g1^3*g3^3*g4^3) - (g1^6*g2^6*t^7.46)/g4^6 + (g3^9*g4^3*t^7.46)/(g1^3*g2^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (g1^13*g4^13*t^7.81)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.81)/g3^5 + (2*g1*g2^7*g4^13*t^7.81)/g3^5 + (g2^13*g4^13*t^7.81)/(g1^5*g3^5) + (3*g1^10*g4^10*t^7.82)/(g2^2*g3^2) + (5*g1^4*g2^4*g4^10*t^7.82)/g3^2 + (3*g2^10*g4^10*t^7.82)/(g1^2*g3^2) + (g1^13*g3*g4^7*t^7.84)/g2^5 + 5*g1^7*g2*g3*g4^7*t^7.84 + 5*g1*g2^7*g3*g4^7*t^7.84 + (g2^13*g3*g4^7*t^7.84)/g1^5 + (3*g1^10*g3^4*g4^4*t^7.85)/g2^2 + 6*g1^4*g2^4*g3^4*g4^4*t^7.85 + (3*g2^10*g3^4*g4^4*t^7.85)/g1^2 + (g1^13*g3^7*g4*t^7.86)/g2^5 + 2*g1^7*g2*g3^7*g4*t^7.86 + 2*g1*g2^7*g3^7*g4*t^7.86 + (g2^13*g3^7*g4*t^7.86)/g1^5 + (g1^10*g3^10*t^7.88)/(g2^2*g4^2) + (2*g1^4*g2^4*g3^10*t^7.88)/g4^2 + (g2^10*g3^10*t^7.88)/(g1^2*g4^2) + (g1^7*g4^7*t^8.04)/(g2^11*g3^11) + (g1*g4^7*t^8.04)/(g2^5*g3^11) + (g2*g4^7*t^8.04)/(g1^5*g3^11) + (g2^7*g4^7*t^8.04)/(g1^11*g3^11) + (g1^4*g4^4*t^8.05)/(g2^8*g3^8) + (g2^4*g4^4*t^8.05)/(g1^8*g3^8) - (g1^7*g4*t^8.06)/(g2^11*g3^5) - (5*g1*g4*t^8.06)/(g2^5*g3^5) - (5*g2*g4*t^8.06)/(g1^5*g3^5) - (g2^7*g4*t^8.06)/(g1^11*g3^5) - (g1^4*t^8.07)/(g2^8*g3^2*g4^2) - (2*t^8.07)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.07)/(g1^8*g3^2*g4^2) - (g1*g3*t^8.09)/(g2^5*g4^5) - (g2*g3*t^8.09)/(g1^5*g4^5) - (g3^4*t^8.1)/(g1^2*g2^2*g4^8) + (g1^5*g3^5*g4^17*t^8.23)/g2 + (g2^5*g3^5*g4^17*t^8.23)/g1 + (g1^17*g2^5*g4^5*t^8.24)/g3 + (2*g1^11*g2^11*g4^5*t^8.24)/g3 + (g1^5*g2^17*g4^5*t^8.24)/g3 + g1^2*g2^2*g3^8*g4^14*t^8.24 + (g1^4*g4^4*t^8.25)/(g2^20*g3^20) + (g4^4*t^8.25)/(g1^2*g2^14*g3^20) + (g4^4*t^8.25)/(g1^8*g2^8*g3^20) + (g4^4*t^8.25)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.25)/(g1^20*g3^20) + g1^14*g2^8*g3^2*g4^2*t^8.26 + g1^8*g2^14*g3^2*g4^2*t^8.26 + (2*g1^5*g3^11*g4^11*t^8.26)/g2 + (2*g2^5*g3^11*g4^11*t^8.26)/g1 + (g1^17*g2^5*g3^5*t^8.27)/g4 + (2*g1^11*g2^11*g3^5*t^8.27)/g4 + (g1^5*g2^17*g3^5*t^8.27)/g4 + g1^2*g2^2*g3^14*g4^8*t^8.27 + (g1^5*g3^17*g4^5*t^8.28)/g2 + (g2^5*g3^17*g4^5*t^8.28)/g1 - (g3^5*g4^5*t^8.48)/(g1*g2^7) - (g3^5*g4^5*t^8.48)/(g1^7*g2) - (g1^11*t^8.49)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.49)/(g3*g4^7) - (g2^11*t^8.49)/(g1*g3*g4^7) - (g3^11*t^8.51)/(g1*g2^7*g4) - (g3^11*t^8.51)/(g1^7*g2*g4) + g1^18*g4^18*t^8.63 + g1^12*g2^6*g4^18*t^8.63 + g1^6*g2^12*g4^18*t^8.63 + g2^18*g4^18*t^8.63 + g1^15*g2^3*g3^3*g4^15*t^8.64 + g1^9*g2^9*g3^3*g4^15*t^8.64 + g1^3*g2^15*g3^3*g4^15*t^8.64 + g1^18*g3^6*g4^12*t^8.65 + 3*g1^12*g2^6*g3^6*g4^12*t^8.65 + 3*g1^6*g2^12*g3^6*g4^12*t^8.65 + g2^18*g3^6*g4^12*t^8.65 + g1^15*g2^3*g3^9*g4^9*t^8.66 + 3*g1^9*g2^9*g3^9*g4^9*t^8.66 + g1^3*g2^15*g3^9*g4^9*t^8.66 + g1^18*g3^12*g4^6*t^8.68 + 3*g1^12*g2^6*g3^12*g4^6*t^8.68 + 3*g1^6*g2^12*g3^12*g4^6*t^8.68 + g2^18*g3^12*g4^6*t^8.68 + g1^15*g2^3*g3^15*g4^3*t^8.69 + g1^9*g2^9*g3^15*g4^3*t^8.69 + g1^3*g2^15*g3^15*g4^3*t^8.69 + g1^18*g3^18*t^8.7 + g1^12*g2^6*g3^18*t^8.7 + g1^6*g2^12*g3^18*t^8.7 + g2^18*g3^18*t^8.7 + (2*g1^6*g4^12*t^8.85)/g3^6 + (g1^12*g4^12*t^8.85)/(g2^6*g3^6) + (2*g2^6*g4^12*t^8.85)/g3^6 + (g2^12*g4^12*t^8.85)/(g1^6*g3^6) + (3*g1^9*g4^9*t^8.86)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.86)/g3^3 + (3*g2^9*g4^9*t^8.86)/(g1^3*g3^3) - 2*g1^6*g4^6*t^8.88 - 2*g2^6*g4^6*t^8.88 + (g1^9*g3^3*g4^3*t^8.89)/g2^3 - g1^3*g2^3*g3^3*g4^3*t^8.89 + (g2^9*g3^3*g4^3*t^8.89)/g1^3 - 6*g1^6*g3^6*t^8.9 - (g1^12*g3^6*t^8.9)/g2^6 - 6*g2^6*g3^6*t^8.9 - (g2^12*g3^6*t^8.9)/g1^6 - (g1^3*g2^3*g3^9*t^8.91)/g4^3 - (g1^6*g3^12*t^8.93)/g4^6 - (g2^6*g3^12*t^8.93)/g4^6 - t^4.04/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.1/(g1^6*g3^6*y) - t^6.1/(g2^6*g3^6*y) - (g1^5*g4^5*t^6.91)/(g2*g3*y) - (g2^5*g4^5*t^6.91)/(g1*g3*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g1^5*g3^5*t^6.94)/(g2*g4*y) - (g2^5*g3^5*t^6.94)/(g1*g4*y) + (g4^2*t^7.12)/(g1^4*g2^4*g3^10*y) - t^7.14/(g1*g2^7*g3^7*g4*y) - t^7.14/(g1^7*g2*g3^7*g4*y) + (g1^7*g4^7*t^7.94)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.94)/(g3^5*y) + (g2^7*g4^7*t^7.94)/(g1^5*g3^5*y) + (g1^7*g3*g4*t^7.96)/(g2^5*y) + (g1*g2*g3*g4*t^7.96)/y + (g2^7*g3*g4*t^7.96)/(g1^5*y) - (g1*g4*t^8.16)/(g2^11*g3^11*y) - (g4*t^8.16)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.16)/(g1^11*g3^11*y) + (g1^6*g2^6*g4^12*t^8.75)/y + (g1^9*g2^3*g3^3*g4^9*t^8.76)/y + (g1^3*g2^9*g3^3*g4^9*t^8.76)/y + (g1^12*g3^6*g4^6*t^8.78)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.78)/y + (g2^12*g3^6*g4^6*t^8.78)/y + (g1^9*g2^3*g3^9*g4^3*t^8.79)/y + (g1^3*g2^9*g3^9*g4^3*t^8.79)/y + (g1^6*g2^6*g3^12*t^8.8)/y - (g1^3*g4^3*t^8.99)/(g2^3*g3^3*y) - (g2^3*g4^3*t^8.99)/(g1^3*g3^3*y) - (t^4.04*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.1*y)/(g1^6*g3^6) - (t^6.1*y)/(g2^6*g3^6) - (g1^5*g4^5*t^6.91*y)/(g2*g3) - (g2^5*g4^5*t^6.91*y)/(g1*g3) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g1^5*g3^5*t^6.94*y)/(g2*g4) - (g2^5*g3^5*t^6.94*y)/(g1*g4) + (g4^2*t^7.12*y)/(g1^4*g2^4*g3^10) - (t^7.14*y)/(g1*g2^7*g3^7*g4) - (t^7.14*y)/(g1^7*g2*g3^7*g4) + (g1^7*g4^7*t^7.94*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.94*y)/g3^5 + (g2^7*g4^7*t^7.94*y)/(g1^5*g3^5) + (g1^7*g3*g4*t^7.96*y)/g2^5 + g1*g2*g3*g4*t^7.96*y + (g2^7*g3*g4*t^7.96*y)/g1^5 - (g1*g4*t^8.16*y)/(g2^11*g3^11) - (g4*t^8.16*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.16*y)/(g1^11*g3^11) + g1^6*g2^6*g4^12*t^8.75*y + g1^9*g2^3*g3^3*g4^9*t^8.76*y + g1^3*g2^9*g3^3*g4^9*t^8.76*y + g1^12*g3^6*g4^6*t^8.78*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.78*y + g2^12*g3^6*g4^6*t^8.78*y + g1^9*g2^3*g3^9*g4^3*t^8.79*y + g1^3*g2^9*g3^9*g4^3*t^8.79*y + g1^6*g2^6*g3^12*t^8.8*y - (g1^3*g4^3*t^8.99*y)/(g2^3*g3^3) - (g2^3*g4^3*t^8.99*y)/(g1^3*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57306 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4768 1.696 0.8707 [M:[0.6885, 1.307, 0.9606], q:[0.4825, 0.478], qb:[0.4825, 0.478], phi:[0.3465]] t^2.065 + t^2.868 + 3*t^2.882 + t^2.895 + t^3.908 + 3*t^3.921 + t^4.131 + t^4.934 + 4*t^4.947 + 3*t^4.961 + t^4.974 + 2*t^5.355 + 2*t^5.369 + t^5.736 + 3*t^5.75 + 7*t^5.763 + 3*t^5.777 + t^5.79 + t^5.973 + t^5.986 - 4*t^6. - t^4.039/y - t^5.079/y - t^4.039*y - t^5.079*y detail