Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57925 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.495 1.7254 0.8665 [X:[], M:[0.6716, 1.3284, 0.6716], q:[0.4926, 0.5], qb:[0.5, 0.4926], phi:[0.3358]] [X:[], M:[[-5, -1, 1], [2, 0, 2], [1, 1, -5]], q:[[6, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ 1 2*t^2.01 + t^2.96 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + t^3.99 + t^4.01 + 3*t^4.03 + 3*t^4.97 + 6*t^4.99 + 3*t^5.01 + 2*t^5.04 + 2*t^5.46 + 2*t^5.49 + t^5.91 + 2*t^5.93 + 4*t^5.96 + 3*t^5.98 + t^6. + t^6.02 + 5*t^6.04 + 2*t^6.47 + 2*t^6.49 + t^6.92 + 3*t^6.94 + 4*t^6.96 + 7*t^6.99 + 9*t^7.01 + 4*t^7.03 + 3*t^7.05 + 2*t^7.46 + 4*t^7.48 + 4*t^7.5 + 2*t^7.52 + 4*t^7.93 + 8*t^7.95 + 13*t^7.97 + 8*t^7.99 + 3*t^8.01 + 7*t^8.06 + 2*t^8.42 + 6*t^8.44 + 4*t^8.46 + 2*t^8.49 - 2*t^8.53 + t^8.87 + 2*t^8.89 + 4*t^8.91 + 8*t^8.93 + 6*t^8.96 + 3*t^8.98 - t^4.01/y - t^5.01/y - (2*t^6.02)/y - t^6.96/y - (2*t^6.99)/y - t^7.01/y - (2*t^7.03)/y + t^7.97/y + (4*t^7.99)/y + t^8.01/y - (2*t^8.04)/y + (2*t^8.93)/y + (2*t^8.96)/y + (2*t^8.98)/y - t^4.01*y - t^5.01*y - 2*t^6.02*y - t^6.96*y - 2*t^6.99*y - t^7.01*y - 2*t^7.03*y + t^7.97*y + 4*t^7.99*y + t^8.01*y - 2*t^8.04*y + 2*t^8.93*y + 2*t^8.96*y + 2*t^8.98*y (g1*g2*t^2.01)/g3^5 + (g3*t^2.01)/(g1^5*g2) + g1^6*g3^6*t^2.96 + g1^6*g2*t^2.98 + (g3^6*t^2.98)/g2 + t^3. + t^3.02/(g1^3*g3^3) + g1^5*g3^5*t^3.96 + g1^2*g3^2*t^3.99 + t^4.01/(g1*g3) + (g1^2*g2^2*t^4.03)/g3^10 + t^4.03/(g1^4*g3^4) + (g3^2*t^4.03)/(g1^10*g2^2) + g1^7*g2*g3*t^4.97 + g1^4*g3^4*t^4.97 + (g1*g3^7*t^4.97)/g2 + (g1^7*g2^2*t^4.99)/g3^5 + (g1^4*g2*t^4.99)/g3^2 + 2*g1*g3*t^4.99 + (g3^4*t^4.99)/(g1^2*g2) + (g3^7*t^4.99)/(g1^5*g2^2) + (g1*g2*t^5.01)/g3^5 + t^5.01/(g1^2*g3^2) + (g3*t^5.01)/(g1^5*g2) + (g2*t^5.04)/(g1^2*g3^8) + t^5.04/(g1^8*g2*g3^2) + (g1^11*t^5.46)/(g2*g3) + (g2*g3^11*t^5.46)/g1 + (g1^5*t^5.49)/(g2^2*g3) + (g2^2*g3^5*t^5.49)/g1 + g1^12*g3^12*t^5.91 + g1^12*g2*g3^6*t^5.93 + (g1^6*g3^12*t^5.93)/g2 + g1^12*g2^2*t^5.96 + 2*g1^6*g3^6*t^5.96 + (g3^12*t^5.96)/g2^2 + g1^6*g2*t^5.98 + g1^3*g3^3*t^5.98 + (g3^6*t^5.98)/g2 - 3*t^6. + (2*g1^3*g2*t^6.)/g3^3 + (2*g3^3*t^6.)/(g1^3*g2) + t^6.02/(g1^3*g3^3) + (g1^3*g2^3*t^6.04)/g3^15 + (g2*t^6.04)/(g1^3*g3^9) + t^6.04/(g1^6*g3^6) + t^6.04/(g1^9*g2*g3^3) + (g3^3*t^6.04)/(g1^15*g2^3) + (g1^10*t^6.47)/(g2*g3^2) + (g2*g3^10*t^6.47)/g1^2 + (g1^4*t^6.49)/(g2^2*g3^2) + (g2^2*g3^4*t^6.49)/g1^2 + g1^11*g3^11*t^6.92 + g1^11*g2*g3^5*t^6.94 + g1^8*g3^8*t^6.94 + (g1^5*g3^11*t^6.94)/g2 + g1^8*g2*g3^2*t^6.96 + 2*g1^5*g3^5*t^6.96 + (g1^2*g3^8*t^6.96)/g2 + (g1^8*g2^2*t^6.99)/g3^4 + (g1^5*g2*t^6.99)/g3 + 3*g1^2*g3^2*t^6.99 + (g3^5*t^6.99)/(g1*g2) + (g3^8*t^6.99)/(g1^4*g2^2) + (g1^8*g2^3*t^7.01)/g3^10 + (g1^5*g2^2*t^7.01)/g3^7 + (2*g1^2*g2*t^7.01)/g3^4 + t^7.01/(g1*g3) + (2*g3^2*t^7.01)/(g1^4*g2) + (g3^5*t^7.01)/(g1^7*g2^2) + (g3^8*t^7.01)/(g1^10*g2^3) + (g1^2*g2^2*t^7.03)/g3^10 + (2*t^7.03)/(g1^4*g3^4) + (g3^2*t^7.03)/(g1^10*g2^2) + (g2^2*t^7.05)/(g1*g3^13) + t^7.05/(g1^7*g3^7) + t^7.05/(g1^13*g2^2*g3) + (g1^15*t^7.46)/g3^3 + (g3^15*t^7.46)/g1^3 + (g1^12*t^7.48)/g3^6 + (g1^9*t^7.48)/(g2*g3^3) + (g2*g3^9*t^7.48)/g1^3 + (g3^12*t^7.48)/g1^6 + t^7.5/g2^3 + g2^3*t^7.5 + (g1^3*t^7.5)/(g2^2*g3^3) + (g2^2*g3^3*t^7.5)/g1^3 + t^7.52/(g1^3*g2^3*g3^3) + (g2^3*t^7.52)/(g1^3*g3^3) + g1^13*g2*g3^7*t^7.93 + 2*g1^10*g3^10*t^7.93 + (g1^7*g3^13*t^7.93)/g2 + g1^13*g2^2*g3*t^7.95 + 2*g1^10*g2*g3^4*t^7.95 + 2*g1^7*g3^7*t^7.95 + (2*g1^4*g3^10*t^7.95)/g2 + (g1*g3^13*t^7.95)/g2^2 + (g1^13*g2^3*t^7.97)/g3^5 + (g1^10*g2^2*t^7.97)/g3^2 + 2*g1^7*g2*g3*t^7.97 + 5*g1^4*g3^4*t^7.97 + (2*g1*g3^7*t^7.97)/g2 + (g3^10*t^7.97)/(g1^2*g2^2) + (g3^13*t^7.97)/(g1^5*g2^3) + (g1^7*g2^2*t^7.99)/g3^5 + (2*g1^4*g2*t^7.99)/g3^2 + 2*g1*g3*t^7.99 + (2*g3^4*t^7.99)/(g1^2*g2) + (g3^7*t^7.99)/(g1^5*g2^2) + (2*g1^4*g2^2*t^8.01)/g3^8 - (2*g1*g2*t^8.01)/g3^5 + (3*t^8.01)/(g1^2*g3^2) - (2*g3*t^8.01)/(g1^5*g2) + (2*g3^4*t^8.01)/(g1^8*g2^2) + (g1^4*g2^4*t^8.06)/g3^20 + (g2^2*t^8.06)/(g1^2*g3^14) + (g2*t^8.06)/(g1^5*g3^11) + t^8.06/(g1^8*g3^8) + t^8.06/(g1^11*g2*g3^5) + t^8.06/(g1^14*g2^2*g3^2) + (g3^4*t^8.06)/(g1^20*g2^4) + (g1^17*g3^5*t^8.42)/g2 + g1^5*g2*g3^17*t^8.42 + (g1^17*t^8.44)/g3 + (2*g1^11*g3^5*t^8.44)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.44 + (g3^17*t^8.44)/g1 + (g1^11*t^8.46)/(g2*g3) + (g1^5*g3^5*t^8.46)/g2^3 + g1^5*g2^3*g3^5*t^8.46 + (g2*g3^11*t^8.46)/g1 + (g1^8*t^8.49)/(g2*g3^4) + (g2*g3^8*t^8.49)/g1^4 - (g1^5*t^8.51)/(g2*g3^7) + (g1^2*t^8.51)/(g2^2*g3^4) + (g2^2*g3^2*t^8.51)/g1^4 - (g2*g3^5*t^8.51)/g1^7 - t^8.53/(g1*g2^2*g3^7) - (g2^2*t^8.53)/(g1^7*g3) + g1^18*g3^18*t^8.87 + g1^18*g2*g3^12*t^8.89 + (g1^12*g3^18*t^8.89)/g2 + g1^18*g2^2*g3^6*t^8.91 + 2*g1^12*g3^12*t^8.91 + (g1^6*g3^18*t^8.91)/g2^2 + g1^18*g2^3*t^8.93 + 2*g1^12*g2*g3^6*t^8.93 + 2*g1^9*g3^9*t^8.93 + (2*g1^6*g3^12*t^8.93)/g2 + (g3^18*t^8.93)/g2^3 + g1^12*g2^2*t^8.96 + 3*g1^9*g2*g3^3*t^8.96 - 2*g1^6*g3^6*t^8.96 + (3*g1^3*g3^9*t^8.96)/g2 + (g3^12*t^8.96)/g2^2 - 3*g1^6*g2*t^8.98 + (2*g1^9*g2^2*t^8.98)/g3^3 + 5*g1^3*g3^3*t^8.98 - (3*g3^6*t^8.98)/g2 + (2*g3^9*t^8.98)/(g1^3*g2^2) - t^4.01/(g1*g3*y) - t^5.01/(g1^2*g3^2*y) - t^6.02/(g1^6*g2*y) - (g2*t^6.02)/(g3^6*y) - (g1^5*g3^5*t^6.96)/y - (g1^5*g2*t^6.99)/(g3*y) - (g3^5*t^6.99)/(g1*g2*y) - t^7.01/(g1*g3*y) - (g2*t^7.03)/(g1*g3^7*y) - t^7.03/(g1^7*g2*g3*y) + (g1^7*g2*g3*t^7.97)/y - (g1^4*g3^4*t^7.97)/y + (g1*g3^7*t^7.97)/(g2*y) + (g1^7*g2^2*t^7.99)/(g3^5*y) + (2*g1*g3*t^7.99)/y + (g3^7*t^7.99)/(g1^5*g2^2*y) + (g1*g2*t^8.01)/(g3^5*y) - t^8.01/(g1^2*g3^2*y) + (g3*t^8.01)/(g1^5*g2*y) - (g1*g2^2*t^8.04)/(g3^11*y) + (g2*t^8.04)/(g1^2*g3^8*y) - (2*t^8.04)/(g1^5*g3^5*y) + t^8.04/(g1^8*g2*g3^2*y) - (g3*t^8.04)/(g1^11*g2^2*y) + (g1^12*g2*g3^6*t^8.93)/y + (g1^6*g3^12*t^8.93)/(g2*y) + (2*g1^6*g3^6*t^8.96)/y + (g1^6*g2*t^8.98)/y + (g3^6*t^8.98)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.01*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^6*g2) - (g2*t^6.02*y)/g3^6 - g1^5*g3^5*t^6.96*y - (g1^5*g2*t^6.99*y)/g3 - (g3^5*t^6.99*y)/(g1*g2) - (t^7.01*y)/(g1*g3) - (g2*t^7.03*y)/(g1*g3^7) - (t^7.03*y)/(g1^7*g2*g3) + g1^7*g2*g3*t^7.97*y - g1^4*g3^4*t^7.97*y + (g1*g3^7*t^7.97*y)/g2 + (g1^7*g2^2*t^7.99*y)/g3^5 + 2*g1*g3*t^7.99*y + (g3^7*t^7.99*y)/(g1^5*g2^2) + (g1*g2*t^8.01*y)/g3^5 - (t^8.01*y)/(g1^2*g3^2) + (g3*t^8.01*y)/(g1^5*g2) - (g1*g2^2*t^8.04*y)/g3^11 + (g2*t^8.04*y)/(g1^2*g3^8) - (2*t^8.04*y)/(g1^5*g3^5) + (t^8.04*y)/(g1^8*g2*g3^2) - (g3*t^8.04*y)/(g1^11*g2^2) + g1^12*g2*g3^6*t^8.93*y + (g1^6*g3^12*t^8.93*y)/g2 + 2*g1^6*g3^6*t^8.96*y + g1^6*g2*t^8.98*y + (g3^6*t^8.98*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57296 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4741 1.6841 0.8753 [M:[0.6709, 1.3282], q:[0.4927, 0.4995], qb:[0.5005, 0.4918], phi:[0.3359]] t^2.013 + t^2.954 + t^2.974 + t^2.98 + t^3. + t^3.023 + t^3.961 + t^3.982 + t^3.985 + t^4.008 + t^4.025 + t^4.966 + t^4.969 + t^4.987 + t^4.989 + t^4.992 + t^4.995 + t^5.013 + t^5.015 + t^5.036 + t^5.46 + t^5.463 + t^5.483 + t^5.486 + t^5.907 + t^5.928 + t^5.933 + t^5.948 + 2*t^5.954 + t^5.959 + t^5.974 + t^5.977 + t^5.994 + 2*t^5.997 - 3*t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y detail