Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57924 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4756 | 1.6903 | 0.873 | [X:[], M:[0.6792, 1.3181, 0.9771], q:[0.4784, 0.4986], qb:[0.5014, 0.4758], phi:[0.341]] | [X:[], M:[[-5, -1, 1], [2, 0, 2], [3, 0, 3]], q:[[6, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$ | ${}$ | -3 | t^2.04 + t^2.86 + t^2.92 + t^2.93 + t^2.94 + t^3. + t^3.89 + 2*t^3.95 + t^4.02 + t^4.08 + t^4.9 + t^4.91 + t^4.96 + 2*t^4.97 + t^4.98 + t^4.99 + t^5.04 + t^5.05 + t^5.38 + t^5.39 + t^5.45 + t^5.46 + t^5.73 + 2*t^5.79 + t^5.8 + 2*t^5.85 + 3*t^5.86 + t^5.87 + t^5.88 + t^5.92 + t^5.93 + t^5.98 + t^5.99 - 3*t^6. - t^6.08 + t^6.11 + t^6.4 + t^6.41 + t^6.47 + t^6.48 + t^6.75 + 2*t^6.81 + 2*t^6.82 + t^6.83 + t^6.87 + 2*t^6.88 + 5*t^6.89 + t^6.94 + 4*t^6.95 + t^7. + 3*t^7.01 - t^7.02 + t^7.08 - t^7.1 + t^7.35 + t^7.37 + t^7.42 + t^7.43 + t^7.49 + t^7.5 + t^7.56 + t^7.58 + t^7.76 + 2*t^7.77 + t^7.82 + 4*t^7.83 + 2*t^7.84 + 2*t^7.85 + t^7.88 + 3*t^7.89 + 4*t^7.9 + 6*t^7.91 + 2*t^7.92 + t^7.96 + 3*t^7.97 + t^7.98 + t^7.99 + t^8.02 + t^8.03 - 3*t^8.04 - 2*t^8.11 - t^8.12 + t^8.15 + t^8.24 + t^8.25 + 4*t^8.31 + 3*t^8.32 + t^8.33 + t^8.37 + 2*t^8.38 + 2*t^8.39 + t^8.4 - t^8.46 - t^8.47 - t^8.52 - 2*t^8.53 - t^8.54 - t^8.6 + t^8.65 + t^8.66 + t^8.67 + t^8.71 + t^8.72 + 4*t^8.73 + t^8.74 + t^8.77 + t^8.78 + 7*t^8.79 + 2*t^8.8 + t^8.81 + t^8.82 + 6*t^8.85 - 2*t^8.86 + t^8.87 + t^8.91 + 2*t^8.92 - 5*t^8.94 + 2*t^8.98 + 3*t^8.99 - t^4.02/y - t^5.05/y - t^6.06/y - t^6.89/y - (2*t^6.95)/y - t^6.96/y - t^7.02/y - t^7.08/y + t^7.9/y - t^7.91/y + t^7.96/y + t^8.04/y - t^8.05/y - t^8.1/y + (2*t^8.79)/y + t^8.8/y + t^8.85/y + (2*t^8.86)/y + t^8.87/y + t^8.92/y + t^8.94/y - t^8.99/y - t^4.02*y - t^5.05*y - t^6.06*y - t^6.89*y - 2*t^6.95*y - t^6.96*y - t^7.02*y - t^7.08*y + t^7.9*y - t^7.91*y + t^7.96*y + t^8.04*y - t^8.05*y - t^8.1*y + 2*t^8.79*y + t^8.8*y + t^8.85*y + 2*t^8.86*y + t^8.87*y + t^8.92*y + t^8.94*y - t^8.99*y | (g3*t^2.04)/(g1^5*g2) + g1^6*g3^6*t^2.86 + (g3^6*t^2.92)/g2 + g1^3*g3^3*t^2.93 + g1^6*g2*t^2.94 + t^3. + g1^5*g3^5*t^3.89 + g1^2*g3^2*t^3.95 + (g3^5*t^3.95)/(g1*g2) + t^4.02/(g1*g3) + (g3^2*t^4.08)/(g1^10*g2^2) + (g1*g3^7*t^4.9)/g2 + g1^4*g3^4*t^4.91 + (g3^7*t^4.96)/(g1^5*g2^2) + (2*g3^4*t^4.97)/(g1^2*g2) + g1*g3*t^4.98 + (g1^4*g2*t^4.99)/g3^2 + (g3*t^5.04)/(g1^5*g2) + t^5.05/(g1^2*g3^2) + (g2*g3^11*t^5.38)/g1 + (g1^11*t^5.39)/(g2*g3) + (g1^5*t^5.45)/(g2^2*g3) + (g2^2*g3^5*t^5.46)/g1 + g1^12*g3^12*t^5.73 + g1^9*g3^9*t^5.79 + (g1^6*g3^12*t^5.79)/g2 + g1^12*g2*g3^6*t^5.8 + (g1^3*g3^9*t^5.85)/g2 + (g3^12*t^5.85)/g2^2 + 3*g1^6*g3^6*t^5.86 + g1^9*g2*g3^3*t^5.87 + g1^12*g2^2*t^5.88 + (g3^6*t^5.92)/g2 + g1^3*g3^3*t^5.93 + (g3^6*t^5.98)/(g1^6*g2^2) + (g3^3*t^5.99)/(g1^3*g2) - 3*t^6. - (g2*t^6.08)/g3^6 + (g3^3*t^6.11)/(g1^15*g2^3) + (g2*g3^10*t^6.4)/g1^2 + (g1^10*t^6.41)/(g2*g3^2) + (g1^4*t^6.47)/(g2^2*g3^2) + (g2^2*g3^4*t^6.48)/g1^2 + g1^11*g3^11*t^6.75 + (2*g1^5*g3^11*t^6.81)/g2 + 2*g1^8*g3^8*t^6.82 + g1^11*g2*g3^5*t^6.83 + (g3^11*t^6.87)/(g1*g2^2) + (2*g1^2*g3^8*t^6.88)/g2 + g1^8*g2*g3^2*t^6.89 + 4*g1^5*g3^5*t^6.89 + (g3^8*t^6.94)/(g1^4*g2^2) + 2*g1^2*g3^2*t^6.95 + (2*g3^5*t^6.95)/(g1*g2) + (g3^8*t^7.)/(g1^10*g2^3) + (g3^2*t^7.01)/(g1^4*g2) + (2*g3^5*t^7.01)/(g1^7*g2^2) - t^7.02/(g1*g3) + (g3^2*t^7.08)/(g1^10*g2^2) - (g2*t^7.1)/(g1*g3^7) + (g3^15*t^7.35)/g1^3 + (g1^15*t^7.37)/g3^3 + (g3^12*t^7.42)/g1^6 + (g2*g3^9*t^7.43)/g1^3 + (g1^9*t^7.44)/(g2*g3^3) - g2^2*g3^6*t^7.44 + t^7.49/g2^3 - (g1^6*t^7.5)/(g2*g3^6) + (g1^3*t^7.5)/(g2^2*g3^3) + (g2^2*g3^3*t^7.5)/g1^3 + t^7.56/(g1^3*g2^3*g3^3) + (g2^3*t^7.58)/(g1^3*g3^3) + (g1^7*g3^13*t^7.76)/g2 + 2*g1^10*g3^10*t^7.77 + (g1*g3^13*t^7.82)/g2^2 + (4*g1^4*g3^10*t^7.83)/g2 + 2*g1^7*g3^7*t^7.84 + 2*g1^10*g2*g3^4*t^7.85 + (g3^13*t^7.88)/(g1^5*g2^3) + (3*g3^10*t^7.89)/(g1^2*g2^2) + (4*g1*g3^7*t^7.9)/g2 + 6*g1^4*g3^4*t^7.91 + (g1^10*g2^2*t^7.92)/g3^2 + g1^7*g2*g3*t^7.92 + (g3^7*t^7.96)/(g1^5*g2^2) + (3*g3^4*t^7.97)/(g1^2*g2) + g1*g3*t^7.98 + (g1^4*g2*t^7.99)/g3^2 + (g3^7*t^8.02)/(g1^11*g2^3) + (g3^4*t^8.03)/(g1^8*g2^2) - (3*g3*t^8.04)/(g1^5*g2) - t^8.11/(g1^5*g3^5) - t^8.11/(g1^8*g2*g3^2) - (g2*t^8.12)/(g1^2*g3^8) + (g3^4*t^8.15)/(g1^20*g2^4) + g1^5*g2*g3^17*t^8.24 + (g1^17*g3^5*t^8.25)/g2 + (2*g1^11*g3^5*t^8.31)/g2^2 + g1^2*g2*g3^14*t^8.31 + (g3^17*t^8.31)/g1 + (g1^14*g3^2*t^8.32)/g2 + 2*g1^5*g2^2*g3^11*t^8.32 + (g1^17*t^8.33)/g3 + (g1^5*g3^5*t^8.37)/g2^3 + (g1^8*g3^2*t^8.38)/g2^2 + (g2*g3^11*t^8.38)/g1 + (g1^11*t^8.39)/(g2*g3) + g1^2*g2^2*g3^8*t^8.39 + g1^5*g2^3*g3^5*t^8.4 - (g2^2*g3^5*t^8.46)/g1 - (g1^11*t^8.47)/g3^7 - (g2*g3^5*t^8.52)/g1^7 - (2*g1^5*t^8.53)/(g2*g3^7) - (g2^3*t^8.54)/(g1*g3) - t^8.59/(g1*g2^2*g3^7) + g1^18*g3^18*t^8.59 - (g2^2*t^8.6)/(g1^7*g3) + (g1^12*g3^18*t^8.65)/g2 + g1^15*g3^15*t^8.66 + g1^18*g2*g3^12*t^8.67 + (g1^6*g3^18*t^8.71)/g2^2 + (g1^9*g3^15*t^8.72)/g2 + g1^15*g2*g3^9*t^8.73 + 3*g1^12*g3^12*t^8.73 + g1^18*g2^2*g3^6*t^8.74 + (g3^18*t^8.77)/g2^3 + (g1^3*g3^15*t^8.78)/g2^2 + 4*g1^9*g3^9*t^8.79 + (3*g1^6*g3^12*t^8.79)/g2 + 2*g1^12*g2*g3^6*t^8.8 + g1^15*g2^2*g3^3*t^8.81 + g1^18*g2^3*t^8.82 + (4*g1^3*g3^9*t^8.85)/g2 + (2*g3^12*t^8.85)/g2^2 - 2*g1^6*g3^6*t^8.86 + g1^9*g2*g3^3*t^8.87 + (g3^12*t^8.91)/(g1^6*g2^3) - (g3^6*t^8.92)/g2 + (3*g3^9*t^8.92)/(g1^3*g2^2) - 5*g1^6*g2*t^8.94 + (g3^6*t^8.98)/(g1^6*g2^2) + (g3^9*t^8.98)/(g1^9*g2^3) + (3*g3^3*t^8.99)/(g1^3*g2) - t^4.02/(g1*g3*y) - t^5.05/(g1^2*g3^2*y) - t^6.06/(g1^6*g2*y) - (g1^5*g3^5*t^6.89)/y - (g1^2*g3^2*t^6.95)/y - (g3^5*t^6.95)/(g1*g2*y) - (g1^5*g2*t^6.96)/(g3*y) - t^7.02/(g1*g3*y) - t^7.08/(g1^7*g2*g3*y) + (g1*g3^7*t^7.9)/(g2*y) - (g1^4*g3^4*t^7.91)/y + (g3^7*t^7.96)/(g1^5*g2^2*y) + (g3*t^8.04)/(g1^5*g2*y) - t^8.05/(g1^2*g3^2*y) - (g3*t^8.1)/(g1^11*g2^2*y) + (g1^9*g3^9*t^8.79)/y + (g1^6*g3^12*t^8.79)/(g2*y) + (g1^12*g2*g3^6*t^8.8)/y + (g1^3*g3^9*t^8.85)/(g2*y) + (2*g1^6*g3^6*t^8.86)/y + (g1^9*g2*g3^3*t^8.87)/y + (g3^6*t^8.92)/(g2*y) + (g1^6*g2*t^8.94)/y - (g3^3*t^8.99)/(g1^3*g2*y) - (t^4.02*y)/(g1*g3) - (t^5.05*y)/(g1^2*g3^2) - (t^6.06*y)/(g1^6*g2) - g1^5*g3^5*t^6.89*y - g1^2*g3^2*t^6.95*y - (g3^5*t^6.95*y)/(g1*g2) - (g1^5*g2*t^6.96*y)/g3 - (t^7.02*y)/(g1*g3) - (t^7.08*y)/(g1^7*g2*g3) + (g1*g3^7*t^7.9*y)/g2 - g1^4*g3^4*t^7.91*y + (g3^7*t^7.96*y)/(g1^5*g2^2) + (g3*t^8.04*y)/(g1^5*g2) - (t^8.05*y)/(g1^2*g3^2) - (g3*t^8.1*y)/(g1^11*g2^2) + g1^9*g3^9*t^8.79*y + (g1^6*g3^12*t^8.79*y)/g2 + g1^12*g2*g3^6*t^8.8*y + (g1^3*g3^9*t^8.85*y)/g2 + 2*g1^6*g3^6*t^8.86*y + g1^9*g2*g3^3*t^8.87*y + (g3^6*t^8.92*y)/g2 + g1^6*g2*t^8.94*y - (g3^3*t^8.99*y)/(g1^3*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57296 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6841 | 0.8753 | [M:[0.6709, 1.3282], q:[0.4927, 0.4995], qb:[0.5005, 0.4918], phi:[0.3359]] | t^2.013 + t^2.954 + t^2.974 + t^2.98 + t^3. + t^3.023 + t^3.961 + t^3.982 + t^3.985 + t^4.008 + t^4.025 + t^4.966 + t^4.969 + t^4.987 + t^4.989 + t^4.992 + t^4.995 + t^5.013 + t^5.015 + t^5.036 + t^5.46 + t^5.463 + t^5.483 + t^5.486 + t^5.907 + t^5.928 + t^5.933 + t^5.948 + 2*t^5.954 + t^5.959 + t^5.974 + t^5.977 + t^5.994 + 2*t^5.997 - 3*t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y | detail |