Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55688 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ | 0.8748 | 1.0812 | 0.8092 | [X:[], M:[0.697, 0.8576], q:[0.7229, 0.5801, 0.7059], qb:[0.5688, 0.5688, 0.5688], phi:[0.5712]] | [X:[], M:[[-4, 1, -1, -1, -1], [2, 0, 2, 2, 2]], q:[[1, -1, 1, 1, 1], [3, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, 0, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ q_1q_3$, $ M_1M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$ | . | -11 | t^2.09 + t^2.57 + 3*t^3.41 + 3*t^3.45 + 3*t^3.82 + t^3.86 + 3*t^3.87 + t^4.18 + t^4.29 + t^4.66 + 6*t^5.13 + t^5.15 + 3*t^5.16 + t^5.19 + 3*t^5.5 + 3*t^5.54 + 3*t^5.92 + t^5.95 + 3*t^5.99 - 11*t^6. + 3*t^6.02 - 3*t^6.03 + t^6.27 + 3*t^6.4 - 3*t^6.41 + 3*t^6.45 - 3*t^6.46 + t^6.75 + 6*t^6.83 + 9*t^6.86 + 6*t^6.89 + 6*t^7.22 + 9*t^7.24 + 9*t^7.27 + 8*t^7.29 + 6*t^7.32 - t^7.34 + 3*t^7.59 + 3*t^7.63 + 6*t^7.65 + 9*t^7.7 - 10*t^7.71 + 2*t^7.72 + 3*t^7.73 + 3*t^7.75 + 3*t^8.01 + t^8.04 + 3*t^8.08 - 11*t^8.09 + 3*t^8.11 - 3*t^8.13 - t^8.2 + t^8.36 + 3*t^8.49 - 3*t^8.5 + 15*t^8.54 + 3*t^8.56 + 7*t^8.57 + 9*t^8.59 + 6*t^8.61 - t^8.62 + 3*t^8.64 + t^8.85 + 6*t^8.92 + 18*t^8.95 + 3*t^8.97 + 9*t^8.98 - t^4.71/y - t^6.8/y + t^7.66/y + (3*t^8.5)/y + (3*t^8.54)/y + t^8.62/y - t^8.9/y + (3*t^8.92)/y + t^8.95/y + (3*t^8.97)/y + (3*t^8.99)/y - t^4.71*y - t^6.8*y + t^7.66*y + 3*t^8.5*y + 3*t^8.54*y + t^8.62*y - t^8.9*y + 3*t^8.92*y + t^8.95*y + 3*t^8.97*y + 3*t^8.99*y | (g2*t^2.09)/(g1^4*g3*g4*g5) + g1^2*g3^2*g4^2*g5^2*t^2.57 + g3^3*g4^3*t^3.41 + g3^3*g5^3*t^3.41 + g4^3*g5^3*t^3.41 + g1^3*g3^3*t^3.45 + g1^3*g4^3*t^3.45 + g1^3*g5^3*t^3.45 + g2*g3^3*t^3.82 + g2*g4^3*t^3.82 + g2*g5^3*t^3.82 + g1^3*g2*t^3.86 + (g1*g3^4*g4*g5*t^3.87)/g2 + (g1*g3*g4^4*g5*t^3.87)/g2 + (g1*g3*g4*g5^4*t^3.87)/g2 + (g2^2*t^4.18)/(g1^8*g3^2*g4^2*g5^2) + g1*g3*g4*g5*t^4.29 + (g2*g3*g4*g5*t^4.66)/g1^2 + (g3^5*t^5.13)/(g1*g4*g5) + (g3^2*g4^2*t^5.13)/(g1*g5) + (g4^5*t^5.13)/(g1*g3*g5) + (g3^2*g5^2*t^5.13)/(g1*g4) + (g4^2*g5^2*t^5.13)/(g1*g3) + (g5^5*t^5.13)/(g1*g3*g4) + g1^4*g3^4*g4^4*g5^4*t^5.15 + (g1^2*g3^2*t^5.16)/(g4*g5) + (g1^2*g4^2*t^5.16)/(g3*g5) + (g1^2*g5^2*t^5.16)/(g3*g4) + (g1^5*t^5.19)/(g3*g4*g5) + (g2*g3^2*g4^2*t^5.5)/(g1^4*g5) + (g2*g3^2*g5^2*t^5.5)/(g1^4*g4) + (g2*g4^2*g5^2*t^5.5)/(g1^4*g3) + (g2*g3^2*t^5.54)/(g1*g4*g5) + (g2*g4^2*t^5.54)/(g1*g3*g5) + (g2*g5^2*t^5.54)/(g1*g3*g4) + (g2^2*g3^2*t^5.92)/(g1^4*g4*g5) + (g2^2*g4^2*t^5.92)/(g1^4*g3*g5) + (g2^2*g5^2*t^5.92)/(g1^4*g3*g4) + (g2^2*t^5.95)/(g1*g3*g4*g5) + g1^2*g3^5*g4^5*g5^2*t^5.99 + g1^2*g3^5*g4^2*g5^5*t^5.99 + g1^2*g3^2*g4^5*g5^5*t^5.99 - 5*t^6. - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g3^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 + g1^5*g3^5*g4^2*g5^2*t^6.02 + g1^5*g3^2*g4^5*g5^2*t^6.02 + g1^5*g3^2*g4^2*g5^5*t^6.02 - (g1^3*t^6.03)/g3^3 - (g1^3*t^6.03)/g4^3 - (g1^3*t^6.03)/g5^3 + (g2^3*t^6.27)/(g1^12*g3^3*g4^3*g5^3) + g1^2*g2*g3^5*g4^2*g5^2*t^6.4 + g1^2*g2*g3^2*g4^5*g5^2*t^6.4 + g1^2*g2*g3^2*g4^2*g5^5*t^6.4 - (g2*t^6.41)/g3^3 - (g2*t^6.41)/g4^3 - (g2*t^6.41)/g5^3 - (g3*g4*g5*t^6.43)/(g1^2*g2) + g1^5*g2*g3^2*g4^2*g5^2*t^6.43 + (g1^3*g3^6*g4^3*g5^3*t^6.45)/g2 + (g1^3*g3^3*g4^6*g5^3*t^6.45)/g2 + (g1^3*g3^3*g4^3*g5^6*t^6.45)/g2 - (g1*g3*g4*t^6.46)/(g2*g5^2) - (g1*g3*g5*t^6.46)/(g2*g4^2) - (g1*g4*g5*t^6.46)/(g2*g3^2) + (g2^2*t^6.75)/g1^6 + g3^6*g4^6*t^6.83 + g3^6*g4^3*g5^3*t^6.83 + g3^3*g4^6*g5^3*t^6.83 + g3^6*g5^6*t^6.83 + g3^3*g4^3*g5^6*t^6.83 + g4^6*g5^6*t^6.83 + g1^3*g3^6*g4^3*t^6.86 + g1^3*g3^3*g4^6*t^6.86 + g1^3*g3^6*g5^3*t^6.86 + 3*g1^3*g3^3*g4^3*g5^3*t^6.86 + g1^3*g4^6*g5^3*t^6.86 + g1^3*g3^3*g5^6*t^6.86 + g1^3*g4^3*g5^6*t^6.86 + g1^6*g3^6*t^6.89 + g1^6*g3^3*g4^3*t^6.89 + g1^6*g4^6*t^6.89 + g1^6*g3^3*g5^3*t^6.89 + g1^6*g4^3*g5^3*t^6.89 + g1^6*g5^6*t^6.89 + (g2*g3^4*t^7.22)/(g1^5*g4^2*g5^2) + (g2*g3*g4*t^7.22)/(g1^5*g5^2) + (g2*g4^4*t^7.22)/(g1^5*g3^2*g5^2) + (g2*g3*g5*t^7.22)/(g1^5*g4^2) + (g2*g4*g5*t^7.22)/(g1^5*g3^2) + (g2*g5^4*t^7.22)/(g1^5*g3^2*g4^2) + g2*g3^6*g4^3*t^7.24 + g2*g3^3*g4^6*t^7.24 + g2*g3^6*g5^3*t^7.24 + 3*g2*g3^3*g4^3*g5^3*t^7.24 + g2*g4^6*g5^3*t^7.24 + g2*g3^3*g5^6*t^7.24 + g2*g4^3*g5^6*t^7.24 + g1^3*g2*g3^6*t^7.27 + 2*g1^3*g2*g3^3*g4^3*t^7.27 + g1^3*g2*g4^6*t^7.27 + 2*g1^3*g2*g3^3*g5^3*t^7.27 + 2*g1^3*g2*g4^3*g5^3*t^7.27 + g1^3*g2*g5^6*t^7.27 + (g1*g3^7*g4^4*g5*t^7.29)/g2 + (g1*g3^4*g4^7*g5*t^7.29)/g2 + (g1*g3^7*g4*g5^4*t^7.29)/g2 + (2*g1*g3^4*g4^4*g5^4*t^7.29)/g2 + (g1*g3*g4^7*g5^4*t^7.29)/g2 + (g1*g3^4*g4*g5^7*t^7.29)/g2 + (g1*g3*g4^4*g5^7*t^7.29)/g2 + g1^6*g2*g3^3*t^7.3 + g1^6*g2*g4^3*t^7.3 - (g3^2*t^7.3)/(g1*g2*g4*g5) - (g4^2*t^7.3)/(g1*g2*g3*g5) - (g5^2*t^7.3)/(g1*g2*g3*g4) + g1^6*g2*g5^3*t^7.3 + (g1^4*g3^7*g4*g5*t^7.32)/g2 + (g1^4*g3^4*g4^4*g5*t^7.32)/g2 + (g1^4*g3*g4^7*g5*t^7.32)/g2 + (g1^4*g3^4*g4*g5^4*t^7.32)/g2 + (g1^4*g3*g4^4*g5^4*t^7.32)/g2 + (g1^4*g3*g4*g5^7*t^7.32)/g2 - (g1^2*t^7.34)/(g2*g3*g4*g5) + (g2^2*g3*g4*t^7.59)/(g1^8*g5^2) + (g2^2*g3*g5*t^7.59)/(g1^8*g4^2) + (g2^2*g4*g5*t^7.59)/(g1^8*g3^2) + (g2^2*g3*t^7.63)/(g1^5*g4^2*g5^2) + (g2^2*g4*t^7.63)/(g1^5*g3^2*g5^2) + (g2^2*g5*t^7.63)/(g1^5*g3^2*g4^2) + g2^2*g3^6*t^7.65 + g2^2*g3^3*g4^3*t^7.65 + g2^2*g4^6*t^7.65 + g2^2*g3^3*g5^3*t^7.65 + g2^2*g4^3*g5^3*t^7.65 + g2^2*g5^6*t^7.65 + g1^3*g2^2*g3^3*t^7.68 + g1^3*g2^2*g4^3*t^7.68 - (g3^2*t^7.68)/(g1^4*g4*g5) - (g4^2*t^7.68)/(g1^4*g3*g5) - (g5^2*t^7.68)/(g1^4*g3*g4) + g1^3*g2^2*g5^3*t^7.68 + g1*g3^7*g4*g5*t^7.7 + 2*g1*g3^4*g4^4*g5*t^7.7 + g1*g3*g4^7*g5*t^7.7 + 2*g1*g3^4*g4*g5^4*t^7.7 + 2*g1*g3*g4^4*g5^4*t^7.7 + g1*g3*g4*g5^7*t^7.7 - (g3^2*t^7.71)/(g1*g4*g5^4) - (g4^2*t^7.71)/(g1*g3*g5^4) - (g3^2*t^7.71)/(g1*g4^4*g5) - (4*t^7.71)/(g1*g3*g4*g5) - (g4^2*t^7.71)/(g1*g3^4*g5) - (g5^2*t^7.71)/(g1*g3*g4^4) - (g5^2*t^7.71)/(g1*g3^4*g4) + g1^6*g2^2*t^7.72 + g1^6*g3^6*g4^6*g5^6*t^7.72 + g1^4*g3^4*g4*g5*t^7.73 + g1^4*g3*g4^4*g5*t^7.73 + g1^4*g3*g4*g5^4*t^7.73 - (g1^2*t^7.75)/(g3*g4*g5^4) - (g1^2*t^7.75)/(g3*g4^4*g5) - (g1^2*t^7.75)/(g3^4*g4*g5) + (g1^2*g3^8*g4^2*g5^2*t^7.75)/g2^2 + (g1^2*g3^5*g4^5*g5^2*t^7.75)/g2^2 + (g1^2*g3^2*g4^8*g5^2*t^7.75)/g2^2 + (g1^2*g3^5*g4^2*g5^5*t^7.75)/g2^2 + (g1^2*g3^2*g4^5*g5^5*t^7.75)/g2^2 + (g1^2*g3^2*g4^2*g5^8*t^7.75)/g2^2 + (g2^3*g3*t^8.01)/(g1^8*g4^2*g5^2) + (g2^3*g4*t^8.01)/(g1^8*g3^2*g5^2) + (g2^3*g5*t^8.01)/(g1^8*g3^2*g4^2) + (g2^3*t^8.04)/(g1^5*g3^2*g4^2*g5^2) + (g2*g3^4*g4^4*g5*t^8.08)/g1^2 + (g2*g3^4*g4*g5^4*t^8.08)/g1^2 + (g2*g3*g4^4*g5^4*t^8.08)/g1^2 - (g2*g3^2*t^8.09)/(g1^4*g4*g5^4) - (g2*g4^2*t^8.09)/(g1^4*g3*g5^4) - (g2*g3^2*t^8.09)/(g1^4*g4^4*g5) - (5*g2*t^8.09)/(g1^4*g3*g4*g5) - (g2*g4^2*t^8.09)/(g1^4*g3^4*g5) - (g2*g5^2*t^8.09)/(g1^4*g3*g4^4) - (g2*g5^2*t^8.09)/(g1^4*g3^4*g4) + g1*g2*g3^4*g4*g5*t^8.11 + g1*g2*g3*g4^4*g5*t^8.11 + g1*g2*g3*g4*g5^4*t^8.11 - (g2*t^8.13)/(g1*g3*g4*g5^4) - (g2*t^8.13)/(g1*g3*g4^4*g5) - (g2*t^8.13)/(g1*g3^4*g4*g5) - (g1^5*g3^2*g4^2*g5^2*t^8.2)/g2 + (g2^4*t^8.36)/(g1^16*g3^4*g4^4*g5^4) + (g2^2*g3^4*g4*g5*t^8.49)/g1^2 + (g2^2*g3*g4^4*g5*t^8.49)/g1^2 + (g2^2*g3*g4*g5^4*t^8.49)/g1^2 - (g2^2*t^8.5)/(g1^4*g3*g4*g5^4) - (g2^2*t^8.5)/(g1^4*g3*g4^4*g5) - (g2^2*t^8.5)/(g1^4*g3^4*g4*g5) + (g3^8*g4^2*t^8.54)/(g1*g5) + (g3^5*g4^5*t^8.54)/(g1*g5) + (g3^2*g4^8*t^8.54)/(g1*g5) + (g3^8*g5^2*t^8.54)/(g1*g4) + (2*g3^5*g4^2*g5^2*t^8.54)/g1 + (2*g3^2*g4^5*g5^2*t^8.54)/g1 + (g4^8*g5^2*t^8.54)/(g1*g3) + (g3^5*g5^5*t^8.54)/(g1*g4) + (2*g3^2*g4^2*g5^5*t^8.54)/g1 + (g4^5*g5^5*t^8.54)/(g1*g3) + (g3^2*g5^8*t^8.54)/(g1*g4) + (g4^2*g5^8*t^8.54)/(g1*g3) + g1^4*g3^7*g4^7*g5^4*t^8.56 + g1^4*g3^7*g4^4*g5^7*t^8.56 + g1^4*g3^4*g4^7*g5^7*t^8.56 + (g1^2*g3^8*t^8.57)/(g4*g5) + (g1^2*g3^5*g4^2*t^8.57)/g5 + (g1^2*g3^2*g4^5*t^8.57)/g5 + (g1^2*g4^8*t^8.57)/(g3*g5) + (g1^2*g3^5*g5^2*t^8.57)/g4 - 2*g1^2*g3^2*g4^2*g5^2*t^8.57 + (g1^2*g4^5*g5^2*t^8.57)/g3 + (g1^2*g3^2*g5^5*t^8.57)/g4 + (g1^2*g4^2*g5^5*t^8.57)/g3 + (g1^2*g5^8*t^8.57)/(g3*g4) + t^8.59/g3^6 + t^8.59/g4^6 + t^8.59/(g3^3*g4^3) + t^8.59/g5^6 + t^8.59/(g3^3*g5^3) + t^8.59/(g4^3*g5^3) + g1^7*g3^7*g4^4*g5^4*t^8.59 + g1^7*g3^4*g4^7*g5^4*t^8.59 + g1^7*g3^4*g4^4*g5^7*t^8.59 + (g1^5*g3^5*t^8.61)/(g4*g5) + (g1^5*g3^2*g4^2*t^8.61)/g5 + (g1^5*g4^5*t^8.61)/(g3*g5) + (g1^5*g3^2*g5^2*t^8.61)/g4 + (g1^5*g4^2*g5^2*t^8.61)/g3 + (g1^5*g5^5*t^8.61)/(g3*g4) - (g1^3*g3^3*g4^3*g5^3*t^8.62)/g2^2 + (g1^8*g3^2*t^8.64)/(g4*g5) + (g1^8*g4^2*t^8.64)/(g3*g5) + (g1^8*g5^2*t^8.64)/(g3*g4) + (g2^3*t^8.85)/(g1^10*g3*g4*g5) + (g2*g3^5*g4^5*t^8.92)/(g1^4*g5) + (g2*g3^5*g4^2*g5^2*t^8.92)/g1^4 + (g2*g3^2*g4^5*g5^2*t^8.92)/g1^4 + (g2*g3^5*g5^5*t^8.92)/(g1^4*g4) + (g2*g3^2*g4^2*g5^5*t^8.92)/g1^4 + (g2*g4^5*g5^5*t^8.92)/(g1^4*g3) + (g2*g3^8*t^8.95)/(g1*g4*g5) + (2*g2*g3^5*g4^2*t^8.95)/(g1*g5) + (2*g2*g3^2*g4^5*t^8.95)/(g1*g5) + (g2*g4^8*t^8.95)/(g1*g3*g5) + (2*g2*g3^5*g5^2*t^8.95)/(g1*g4) + (3*g2*g3^2*g4^2*g5^2*t^8.95)/g1 + (2*g2*g4^5*g5^2*t^8.95)/(g1*g3) + (2*g2*g3^2*g5^5*t^8.95)/(g1*g4) + (2*g2*g4^2*g5^5*t^8.95)/(g1*g3) + (g2*g5^8*t^8.95)/(g1*g3*g4) + g1^4*g2*g3^7*g4^4*g5^4*t^8.97 + g1^4*g2*g3^4*g4^7*g5^4*t^8.97 + g1^4*g2*g3^4*g4^4*g5^7*t^8.97 + (2*g1^2*g2*g3^5*t^8.98)/(g4*g5) + (g1^2*g2*g3^2*g4^2*t^8.98)/g5 + (2*g1^2*g2*g4^5*t^8.98)/(g3*g5) + (g1^2*g2*g3^2*g5^2*t^8.98)/g4 + (g1^2*g2*g4^2*g5^2*t^8.98)/g3 + (2*g1^2*g2*g5^5*t^8.98)/(g3*g4) - t^4.71/(g1*g3*g4*g5*y) - (g2*t^6.8)/(g1^5*g3^2*g4^2*g5^2*y) + (g2*g3*g4*g5*t^7.66)/(g1^2*y) + (g2*g3^2*g4^2*t^8.5)/(g1^4*g5*y) + (g2*g3^2*g5^2*t^8.5)/(g1^4*g4*y) + (g2*g4^2*g5^2*t^8.5)/(g1^4*g3*y) + (g2*g3^2*t^8.54)/(g1*g4*g5*y) + (g2*g4^2*t^8.54)/(g1*g3*g5*y) + (g2*g5^2*t^8.54)/(g1*g3*g4*y) + (g1^3*t^8.62)/(g2*y) - (g2^2*t^8.9)/(g1^9*g3^3*g4^3*g5^3*y) + (g2^2*g3^2*t^8.92)/(g1^4*g4*g5*y) + (g2^2*g4^2*t^8.92)/(g1^4*g3*g5*y) + (g2^2*g5^2*t^8.92)/(g1^4*g3*g4*y) + (g2^2*t^8.95)/(g1*g3*g4*g5*y) + (g3^3*t^8.97)/(g1^3*y) + (g4^3*t^8.97)/(g1^3*y) + (g5^3*t^8.97)/(g1^3*y) + (g1^2*g3^5*g4^5*g5^2*t^8.99)/y + (g1^2*g3^5*g4^2*g5^5*t^8.99)/y + (g1^2*g3^2*g4^5*g5^5*t^8.99)/y - (t^4.71*y)/(g1*g3*g4*g5) - (g2*t^6.8*y)/(g1^5*g3^2*g4^2*g5^2) + (g2*g3*g4*g5*t^7.66*y)/g1^2 + (g2*g3^2*g4^2*t^8.5*y)/(g1^4*g5) + (g2*g3^2*g5^2*t^8.5*y)/(g1^4*g4) + (g2*g4^2*g5^2*t^8.5*y)/(g1^4*g3) + (g2*g3^2*t^8.54*y)/(g1*g4*g5) + (g2*g4^2*t^8.54*y)/(g1*g3*g5) + (g2*g5^2*t^8.54*y)/(g1*g3*g4) + (g1^3*t^8.62*y)/g2 - (g2^2*t^8.9*y)/(g1^9*g3^3*g4^3*g5^3) + (g2^2*g3^2*t^8.92*y)/(g1^4*g4*g5) + (g2^2*g4^2*t^8.92*y)/(g1^4*g3*g5) + (g2^2*g5^2*t^8.92*y)/(g1^4*g3*g4) + (g2^2*t^8.95*y)/(g1*g3*g4*g5) + (g3^3*t^8.97*y)/g1^3 + (g4^3*t^8.97*y)/g1^3 + (g5^3*t^8.97*y)/g1^3 + g1^2*g3^5*g4^5*g5^2*t^8.99*y + g1^2*g3^5*g4^2*g5^5*t^8.99*y + g1^2*g3^2*g4^5*g5^5*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55808 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ + $ M_2\tilde{q}_2\tilde{q}_3$ | 0.8748 | 1.0808 | 0.8095 | [X:[], M:[0.6967, 0.8596], q:[0.7233, 0.5801, 0.7065], qb:[0.5688, 0.5702, 0.5702], phi:[0.5702]] | t^2.09 + t^2.58 + 3*t^3.42 + 3*t^3.45 + 3*t^3.83 + t^3.86 + 3*t^3.88 + t^4.18 + t^4.29 + t^4.67 + t^5.12 + 5*t^5.13 + 4*t^5.16 + t^5.19 + 3*t^5.51 + 3*t^5.54 + 3*t^5.92 + t^5.95 - 8*t^6. - t^4.71/y - t^4.71*y | detail | |
55711 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.8899 | 1.1055 | 0.805 | [X:[], M:[0.6746, 0.8799, 0.7969], q:[0.7223, 0.6032, 0.7177], qb:[0.5999, 0.5584, 0.5584], phi:[0.5601]] | t^2.02 + t^2.39 + t^2.64 + t^3.35 + 2*t^3.47 + 2*t^3.48 + 2*t^3.83 + 2*t^3.84 + t^3.95 + t^3.96 + t^3.97 + t^4.05 + t^4.32 + t^4.41 + t^4.66 + t^4.78 + 4*t^5.03 + 4*t^5.16 + 2*t^5.28 + t^5.29 + t^5.3 + t^5.37 + 2*t^5.5 + 2*t^5.51 + t^5.74 + 2*t^5.85 + 2*t^5.87 + t^5.98 + 2*t^5.99 - 7*t^6. - t^4.68/y - t^4.68*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55441 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ | 0.8907 | 1.0986 | 0.8108 | [X:[], M:[0.7371, 0.8394], q:[0.6314, 0.6314, 0.604], qb:[0.604, 0.604, 0.604], phi:[0.5803]] | t^2.21 + t^2.52 + 6*t^3.62 + 8*t^3.71 + t^4.42 + t^4.73 + t^5.04 + 10*t^5.36 + 8*t^5.45 + 3*t^5.53 + 6*t^5.84 - 20*t^6. - t^4.74/y - t^4.74*y | detail |