Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55808 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.8748 1.0808 0.8095 [X:[], M:[0.6967, 0.8596], q:[0.7233, 0.5801, 0.7065], qb:[0.5688, 0.5702, 0.5702], phi:[0.5702]] [X:[], M:[[1, 1, 6, 6], [0, 0, -2, -2]], q:[[-1, 0, -1, -1], [0, -1, -5, -5], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[0, 0, 1, 1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_1^2$, $ q_1q_3$, $ M_1M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ \phi_1q_3^2$ . -8 t^2.09 + t^2.58 + 3*t^3.42 + 3*t^3.45 + 3*t^3.83 + t^3.86 + 3*t^3.88 + t^4.18 + t^4.29 + t^4.67 + t^5.12 + 5*t^5.13 + 4*t^5.16 + t^5.19 + 3*t^5.51 + 3*t^5.54 + 3*t^5.92 + t^5.95 - 8*t^6. + t^6.27 + t^6.4 - t^6.41 - t^6.43 + t^6.44 + t^6.45 - t^6.46 + t^6.76 + 3*t^6.83 + 3*t^6.84 + 2*t^6.86 + 7*t^6.87 + t^6.89 + 5*t^6.9 + t^7.21 + 5*t^7.22 + 2*t^7.24 + 7*t^7.25 + t^7.27 + 8*t^7.28 + 2*t^7.29 + 3*t^7.3 + 3*t^7.31 + t^7.32 + 4*t^7.33 + 3*t^7.6 + 3*t^7.63 + t^7.65 + 5*t^7.66 - 3*t^7.68 + 3*t^7.69 + t^7.7 - 2*t^7.71 + t^7.72 + t^7.74 + t^7.75 + 5*t^7.76 + 3*t^8.01 + t^8.04 - 8*t^8.09 - t^8.2 + t^8.36 + t^8.49 - t^8.5 + 2*t^8.54 + 13*t^8.55 + 5*t^8.57 + 10*t^8.58 + t^8.59 + 2*t^8.6 + 7*t^8.61 - t^8.63 + 3*t^8.64 + t^8.85 + 3*t^8.92 + 3*t^8.93 + 5*t^8.95 + 13*t^8.96 + 3*t^8.98 + 9*t^8.99 - t^4.71/y - t^6.8/y + t^7.67/y + (3*t^8.51)/y + (3*t^8.54)/y + t^8.62/y - t^8.89/y + (3*t^8.92)/y + t^8.95/y + (3*t^8.97)/y - t^4.71*y - t^6.8*y + t^7.67*y + 3*t^8.51*y + 3*t^8.54*y + t^8.62*y - t^8.89*y + 3*t^8.92*y + t^8.95*y + 3*t^8.97*y g1*g2*g3^6*g4^6*t^2.09 + t^2.58/(g3^2*g4^2) + g2*g3^2*t^3.42 + g2*g4^2*t^3.42 + g3^2*g4^2*t^3.42 + t^3.45/(g3^5*g4^5) + t^3.45/(g2*g3^3*g4^5) + t^3.45/(g2*g3^5*g4^3) + g1*g2*t^3.83 + g1*g3^2*t^3.83 + g1*g4^2*t^3.83 + (g1*t^3.86)/(g2*g3^5*g4^5) + (g2*t^3.88)/(g1*g3*g4) + (g3*t^3.88)/(g1*g4) + (g4*t^3.88)/(g1*g3) + g1^2*g2^2*g3^12*g4^12*t^4.18 + t^4.29/(g3*g4) + g1*g2*g3^4*g4^4*t^4.67 + g2^2*g3*g4*t^5.12 + g2*g3^3*g4*t^5.13 + g3^5*g4*t^5.13 + g2*g3*g4^3*t^5.13 + g3^3*g4^3*t^5.13 + g3*g4^5*t^5.13 + (2*t^5.16)/(g3^4*g4^4) + t^5.16/(g2*g3^2*g4^4) + t^5.16/(g2*g3^4*g4^2) + t^5.19/(g2^2*g3^9*g4^9) + g1*g2^2*g3^8*g4^6*t^5.51 + g1*g2^2*g3^6*g4^8*t^5.51 + g1*g2*g3^8*g4^8*t^5.51 + g1*g2*g3*g4*t^5.54 + g1*g3^3*g4*t^5.54 + g1*g3*g4^3*t^5.54 + g1^2*g2^2*g3^6*g4^6*t^5.92 + g1^2*g2*g3^8*g4^6*t^5.92 + g1^2*g2*g3^6*g4^8*t^5.92 + g1^2*g3*g4*t^5.95 - 4*t^6. - (g3^2*t^6.)/g2 - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g2 - (g4^2*t^6.)/g3^2 + t^6.03/(g3^7*g4^7) - t^6.03/(g2^2*g3^5*g4^5) + g1^3*g2^3*g3^18*g4^18*t^6.27 + (g1*g2*t^6.4)/(g3^2*g4^2) - (g1*t^6.41)/g2 - (g2*g3^4*g4^4*t^6.43)/g1 + (g1*t^6.44)/(g2*g3^7*g4^7) + (g2*t^6.45)/(g1*g3^3*g4^3) - t^6.46/(g1*g2*g3*g4) + g1^2*g2^2*g3^10*g4^10*t^6.76 + g2^2*g3^4*t^6.83 + g2^2*g3^2*g4^2*t^6.83 + g2^2*g4^4*t^6.83 + g2*g3^4*g4^2*t^6.84 + g2*g3^2*g4^4*t^6.84 + g3^4*g4^4*t^6.84 + (g2*t^6.86)/(g3^3*g4^5) + (g2*t^6.86)/(g3^5*g4^3) + t^6.87/(g3*g4^5) + (3*t^6.87)/(g3^3*g4^3) + t^6.87/(g2*g3*g4^3) + t^6.87/(g3^5*g4) + t^6.87/(g2*g3^3*g4) + t^6.89/(g3^10*g4^10) + t^6.9/(g2*g3^8*g4^10) + t^6.9/(g2^2*g3^6*g4^10) + t^6.9/(g2*g3^10*g4^8) + t^6.9/(g2^2*g3^8*g4^8) + t^6.9/(g2^2*g3^10*g4^6) + g1*g2^3*g3^7*g4^7*t^7.21 + g1*g2^2*g3^9*g4^7*t^7.22 + g1*g2*g3^11*g4^7*t^7.22 + g1*g2^2*g3^7*g4^9*t^7.22 + g1*g2*g3^9*g4^9*t^7.22 + g1*g2*g3^7*g4^11*t^7.22 + g1*g2^2*g3^2*t^7.24 + g1*g2^2*g4^2*t^7.24 + g1*g2*g3^4*t^7.25 + 3*g1*g2*g3^2*g4^2*t^7.25 + g1*g3^4*g4^2*t^7.25 + g1*g2*g4^4*t^7.25 + g1*g3^2*g4^4*t^7.25 + (g1*g2*t^7.27)/(g3^5*g4^5) + (2*g1*t^7.28)/(g3^3*g4^5) + (g1*t^7.28)/(g2*g3*g4^5) + (2*g1*t^7.28)/(g3^5*g4^3) + (2*g1*t^7.28)/(g2*g3^3*g4^3) + (g1*t^7.28)/(g2*g3^5*g4) + (g2^2*g3*t^7.29)/(g1*g4) + (g2^2*g4*t^7.29)/(g1*g3) + (g2*g3^3*t^7.3)/(g1*g4) + (g2*g3*g4*t^7.3)/g1 + (g2*g4^3*t^7.3)/(g1*g3) + (g1*t^7.31)/(g2*g3^10*g4^10) + (g1*t^7.31)/(g2^2*g3^8*g4^10) + (g1*t^7.31)/(g2^2*g3^10*g4^8) + (g2*t^7.32)/(g1*g3^6*g4^6) + t^7.33/(g1*g3^4*g4^6) + t^7.33/(g1*g2*g3^2*g4^6) + t^7.33/(g1*g3^6*g4^4) + t^7.33/(g1*g2*g3^6*g4^2) + g1^2*g2^3*g3^14*g4^12*t^7.6 + g1^2*g2^3*g3^12*g4^14*t^7.6 + g1^2*g2^2*g3^14*g4^14*t^7.6 + g1^2*g2^2*g3^7*g4^7*t^7.63 + g1^2*g2*g3^9*g4^7*t^7.63 + g1^2*g2*g3^7*g4^9*t^7.63 + g1^2*g2^2*t^7.65 + g1^2*g2*g3^2*t^7.66 + g1^2*g3^4*t^7.66 + g1^2*g2*g4^2*t^7.66 + g1^2*g3^2*g4^2*t^7.66 + g1^2*g4^4*t^7.66 - g2^2*g3^6*g4^6*t^7.68 - g2*g3^8*g4^6*t^7.68 - g2*g3^6*g4^8*t^7.68 + (g1^2*t^7.69)/(g3^5*g4^5) + (g1^2*t^7.69)/(g2*g3^3*g4^5) + (g1^2*t^7.69)/(g2*g3^5*g4^3) + (g2^2*t^7.7)/(g3*g4) + (g2*g3*t^7.71)/g4 + (g2*g4*t^7.71)/g3 - 2*g3*g4*t^7.71 - (g3^3*g4*t^7.71)/g2 - (g3*g4^3*t^7.71)/g2 + (g1^2*t^7.72)/(g2^2*g3^10*g4^10) + (2*t^7.74)/(g3^6*g4^6) - t^7.74/(g2^2*g3^4*g4^4) + (g2^2*t^7.75)/(g1^2*g3^2*g4^2) + t^7.76/g1^2 + (g2*t^7.76)/(g1^2*g3^2) + (g2*t^7.76)/(g1^2*g4^2) + (g3^2*t^7.76)/(g1^2*g4^2) + (g4^2*t^7.76)/(g1^2*g3^2) + g1^3*g2^3*g3^12*g4^12*t^8.01 + g1^3*g2^2*g3^14*g4^12*t^8.01 + g1^3*g2^2*g3^12*g4^14*t^8.01 + g1^3*g2*g3^7*g4^7*t^8.04 - g1*g2*g3^8*g4^4*t^8.09 - 4*g1*g2*g3^6*g4^6*t^8.09 - g1*g3^8*g4^6*t^8.09 - g1*g2*g3^4*g4^8*t^8.09 - g1*g3^6*g4^8*t^8.09 + (g1*g2*t^8.12)/(g3*g4) - (g1*g3*g4*t^8.12)/g2 - t^8.2/(g1*g2*g3^7*g4^7) + g1^4*g2^4*g3^24*g4^24*t^8.36 + g1^2*g2^2*g3^4*g4^4*t^8.49 - g1^2*g3^6*g4^6*t^8.5 + g2^3*g3^3*g4*t^8.54 + g2^3*g3*g4^3*t^8.54 + g2^2*g3^5*g4*t^8.55 + g2*g3^7*g4*t^8.55 + 2*g2^2*g3^3*g4^3*t^8.55 + 2*g2*g3^5*g4^3*t^8.55 + g3^7*g4^3*t^8.55 + g2^2*g3*g4^5*t^8.55 + 2*g2*g3^3*g4^5*t^8.55 + g3^5*g4^5*t^8.55 + g2*g3*g4^7*t^8.55 + g3^3*g4^7*t^8.55 + (g2^2*t^8.57)/(g3^4*g4^4) + (2*g2*t^8.57)/(g3^2*g4^4) + (2*g2*t^8.57)/(g3^4*g4^2) + (2*t^8.58)/g3^4 + (2*t^8.58)/(g2*g3^2) + (2*t^8.58)/g4^4 + (g3^2*t^8.58)/(g2*g4^4) + (2*t^8.58)/(g2*g4^2) + (g4^2*t^8.58)/(g2*g3^4) + t^8.59/g2^2 + (2*t^8.6)/(g3^9*g4^9) + (2*t^8.61)/(g2*g3^7*g4^9) + t^8.61/(g2^2*g3^5*g4^9) + (2*t^8.61)/(g2*g3^9*g4^7) + t^8.61/(g2^2*g3^7*g4^7) + t^8.61/(g2^2*g3^9*g4^5) - t^8.63/(g1^2*g3^3*g4^3) + t^8.64/(g2^2*g3^14*g4^14) + t^8.64/(g2^3*g3^12*g4^14) + t^8.64/(g2^3*g3^14*g4^12) + g1^3*g2^3*g3^16*g4^16*t^8.85 + g1*g2^3*g3^10*g4^6*t^8.92 + g1*g2^3*g3^8*g4^8*t^8.92 + g1*g2^3*g3^6*g4^10*t^8.92 + g1*g2^2*g3^10*g4^8*t^8.93 + g1*g2^2*g3^8*g4^10*t^8.93 + g1*g2*g3^10*g4^10*t^8.93 + g1*g2^3*g3*g4*t^8.95 + 2*g1*g2^2*g3^3*g4*t^8.95 + 2*g1*g2^2*g3*g4^3*t^8.95 + 2*g1*g2*g3^5*g4*t^8.96 + g1*g3^7*g4*t^8.96 + 3*g1*g2*g3^3*g4^3*t^8.96 + 2*g1*g3^5*g4^3*t^8.96 + 2*g1*g2*g3*g4^5*t^8.96 + 2*g1*g3^3*g4^5*t^8.96 + g1*g3*g4^7*t^8.96 + (3*g1*g2*t^8.98)/(g3^4*g4^4) + (2*g1*t^8.99)/(g2*g3^4) + (2*g1*t^8.99)/(g2*g4^4) + (2*g1*t^8.99)/(g3^2*g4^4) + (2*g1*t^8.99)/(g3^4*g4^2) + (g1*t^8.99)/(g2*g3^2*g4^2) - (g3*g4*t^4.71)/y - (g1*g2*g3^7*g4^7*t^6.8)/y + (g1*g2*g3^4*g4^4*t^7.67)/y + (g1*g2^2*g3^8*g4^6*t^8.51)/y + (g1*g2^2*g3^6*g4^8*t^8.51)/y + (g1*g2*g3^8*g4^8*t^8.51)/y + (g1*g2*g3*g4*t^8.54)/y + (g1*g3^3*g4*t^8.54)/y + (g1*g3*g4^3*t^8.54)/y + t^8.62/(g1*g2*g3^5*g4^5*y) - (g1^2*g2^2*g3^13*g4^13*t^8.89)/y + (g1^2*g2^2*g3^6*g4^6*t^8.92)/y + (g1^2*g2*g3^8*g4^6*t^8.92)/y + (g1^2*g2*g3^6*g4^8*t^8.92)/y + (g1^2*g3*g4*t^8.95)/y + (g2^2*g3^5*g4^5*t^8.97)/y + (g2*g3^7*g4^5*t^8.97)/y + (g2*g3^5*g4^7*t^8.97)/y - g3*g4*t^4.71*y - g1*g2*g3^7*g4^7*t^6.8*y + g1*g2*g3^4*g4^4*t^7.67*y + g1*g2^2*g3^8*g4^6*t^8.51*y + g1*g2^2*g3^6*g4^8*t^8.51*y + g1*g2*g3^8*g4^8*t^8.51*y + g1*g2*g3*g4*t^8.54*y + g1*g3^3*g4*t^8.54*y + g1*g3*g4^3*t^8.54*y + (t^8.62*y)/(g1*g2*g3^5*g4^5) - g1^2*g2^2*g3^13*g4^13*t^8.89*y + g1^2*g2^2*g3^6*g4^6*t^8.92*y + g1^2*g2*g3^8*g4^6*t^8.92*y + g1^2*g2*g3^6*g4^8*t^8.92*y + g1^2*g3*g4*t^8.95*y + g2^2*g3^5*g4^5*t^8.97*y + g2*g3^7*g4^5*t^8.97*y + g2*g3^5*g4^7*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55688 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ 0.8748 1.0812 0.8092 [X:[], M:[0.697, 0.8576], q:[0.7229, 0.5801, 0.7059], qb:[0.5688, 0.5688, 0.5688], phi:[0.5712]] t^2.09 + t^2.57 + 3*t^3.41 + 3*t^3.45 + 3*t^3.82 + t^3.86 + 3*t^3.87 + t^4.18 + t^4.29 + t^4.66 + 6*t^5.13 + t^5.15 + 3*t^5.16 + t^5.19 + 3*t^5.5 + 3*t^5.54 + 3*t^5.92 + t^5.95 + 3*t^5.99 - 11*t^6. - t^4.71/y - t^4.71*y detail