Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55711 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.8899 | 1.1055 | 0.805 | [X:[], M:[0.6746, 0.8799, 0.7969], q:[0.7223, 0.6032, 0.7177], qb:[0.5999, 0.5584, 0.5584], phi:[0.5601]] | [X:[], M:[[-4, 1, -1, -1, -1], [2, 0, 2, 2, 2], [-3, 0, -3, 0, 0]], q:[[1, -1, 1, 1, 1], [3, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, 0, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_3$, $ M_2$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ q_1q_3$, $ M_1M_3$, $ M_1M_2$, $ M_3^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ \phi_1q_3^2$, $ M_2\tilde{q}_2\tilde{q}_3$ | . | -7 | t^2.02 + t^2.39 + t^2.64 + t^3.35 + 2*t^3.47 + 2*t^3.48 + 2*t^3.83 + 2*t^3.84 + t^3.95 + t^3.96 + t^3.97 + t^4.05 + t^4.32 + t^4.41 + t^4.66 + t^4.78 + 4*t^5.03 + 4*t^5.16 + 2*t^5.28 + t^5.29 + t^5.3 + t^5.37 + 2*t^5.5 + 2*t^5.51 + t^5.74 + 2*t^5.85 + 2*t^5.87 + t^5.98 + 2*t^5.99 - 7*t^6. - t^6.01 + t^6.07 + 2*t^6.11 - 2*t^6.13 + 2*t^6.22 + 2*t^6.23 + t^6.34 - t^6.37 + t^6.44 + 2*t^6.47 - 2*t^6.49 + t^6.59 + t^6.6 + t^6.61 + t^6.69 + t^6.7 + t^6.71 + t^6.81 + 4*t^6.83 + 3*t^6.95 + 4*t^6.96 + 3*t^6.97 + 4*t^7.05 + t^7.17 + 4*t^7.18 + 2*t^7.19 - 2*t^7.2 + 6*t^7.3 + 4*t^7.31 + 4*t^7.32 + 2*t^7.33 - t^7.34 + t^7.4 + 4*t^7.42 + 2*t^7.43 + 4*t^7.44 + 2*t^7.45 + 2*t^7.52 + 2*t^7.53 + 3*t^7.66 + 5*t^7.67 - 2*t^7.68 + t^7.76 + 2*t^7.78 + 6*t^7.79 + 2*t^7.88 + 2*t^7.89 + t^7.91 + 4*t^7.92 + t^7.93 + t^8. + 2*t^8.01 - 7*t^8.02 - t^8.03 + t^8.09 + t^8.13 + 2*t^8.14 - 2*t^8.16 + 2*t^8.24 + 2*t^8.26 - t^8.3 + t^8.37 + 4*t^8.38 - 7*t^8.39 + t^8.46 + 2*t^8.49 - 2*t^8.5 + 8*t^8.51 + 4*t^8.52 + 2*t^8.61 + 3*t^8.62 + 5*t^8.63 - 3*t^8.64 + 5*t^8.65 + t^8.71 + t^8.72 + t^8.73 + 4*t^8.75 + t^8.76 + 2*t^8.78 + t^8.83 + 2*t^8.85 + 8*t^8.86 + 4*t^8.87 - 2*t^8.88 + 3*t^8.97 + 7*t^8.98 + 6*t^8.99 - t^4.68/y - t^6.7/y - t^7.07/y + t^7.41/y + t^7.66/y + t^8.03/y + t^8.29/y + t^8.37/y + (2*t^8.5)/y + (2*t^8.51)/y + t^8.66/y - t^8.73/y + t^8.74/y + (2*t^8.85)/y + (4*t^8.87)/y + (2*t^8.88)/y + t^8.98/y + (3*t^8.99)/y - t^4.68*y - t^6.7*y - t^7.07*y + t^7.41*y + t^7.66*y + t^8.03*y + t^8.29*y + t^8.37*y + 2*t^8.5*y + 2*t^8.51*y + t^8.66*y - t^8.73*y + t^8.74*y + 2*t^8.85*y + 4*t^8.87*y + 2*t^8.88*y + t^8.98*y + 3*t^8.99*y | (g2*t^2.02)/(g1^4*g3*g4*g5) + t^2.39/(g1^3*g3^3) + g1^2*g3^2*g4^2*g5^2*t^2.64 + g4^3*g5^3*t^3.35 + g3^3*g4^3*t^3.47 + g3^3*g5^3*t^3.47 + g1^3*g4^3*t^3.48 + g1^3*g5^3*t^3.48 + g2*g4^3*t^3.83 + g2*g5^3*t^3.83 + (g1*g3*g4^4*g5*t^3.84)/g2 + (g1*g3*g4*g5^4*t^3.84)/g2 + g2*g3^3*t^3.95 + g1^3*g2*t^3.96 + (g1*g3^4*g4*g5*t^3.97)/g2 + (g2^2*t^4.05)/(g1^8*g3^2*g4^2*g5^2) + g1*g3*g4*g5*t^4.32 + (g2*t^4.41)/(g1^7*g3^4*g4*g5) + (g2*g3*g4*g5*t^4.66)/g1^2 + t^4.78/(g1^6*g3^6) + (g4^5*t^5.03)/(g1*g3*g5) + (2*g4^2*g5^2*t^5.03)/(g1*g3) + (g5^5*t^5.03)/(g1*g3*g4) + (g1^2*g4^2*t^5.16)/(g3*g5) + (g3^2*g4^2*t^5.16)/(g1*g5) + (g1^2*g5^2*t^5.16)/(g3*g4) + (g3^2*g5^2*t^5.16)/(g1*g4) + (g3^5*t^5.28)/(g1*g4*g5) + g1^4*g3^4*g4^4*g5^4*t^5.28 + (g1^2*g3^2*t^5.29)/(g4*g5) + (g1^5*t^5.3)/(g3*g4*g5) + (g2*g4^2*g5^2*t^5.37)/(g1^4*g3) + (g2*g3^2*g4^2*t^5.5)/(g1^4*g5) + (g2*g3^2*g5^2*t^5.5)/(g1^4*g4) + (g2*g4^2*t^5.51)/(g1*g3*g5) + (g2*g5^2*t^5.51)/(g1*g3*g4) + (g4^3*g5^3*t^5.74)/(g1^3*g3^3) + (g2^2*g4^2*t^5.85)/(g1^4*g3*g5) + (g2^2*g5^2*t^5.85)/(g1^4*g3*g4) + (g4^3*t^5.87)/g1^3 + (g5^3*t^5.87)/g1^3 + (g2^2*g3^2*t^5.98)/(g1^4*g4*g5) + (g2^2*t^5.99)/(g1*g3*g4*g5) + g1^2*g3^2*g4^5*g5^5*t^5.99 - 5*t^6. - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g4^3 - (g1^3*t^6.01)/g3^3 + (g2^3*t^6.07)/(g1^12*g3^3*g4^3*g5^3) + g1^2*g3^5*g4^5*g5^2*t^6.11 + g1^2*g3^5*g4^2*g5^5*t^6.11 - (g3^3*t^6.12)/g4^3 - (g3^3*t^6.12)/g5^3 + g1^5*g3^2*g4^5*g5^2*t^6.12 + g1^5*g3^2*g4^2*g5^5*t^6.12 - (g1^3*t^6.13)/g4^3 - (g1^3*t^6.13)/g5^3 + (g2*g4^3*t^6.22)/(g1^3*g3^3) + (g2*g5^3*t^6.22)/(g1^3*g3^3) + (g4^4*g5*t^6.23)/(g1^2*g2*g3^2) + (g4*g5^4*t^6.23)/(g1^2*g2*g3^2) + (g2*t^6.34)/g1^3 - (g1*g4*g5*t^6.37)/(g2*g3^2) + (g2^2*t^6.44)/(g1^11*g3^5*g4^2*g5^2) + g1^2*g2*g3^2*g4^5*g5^2*t^6.47 + g1^2*g2*g3^2*g4^2*g5^5*t^6.47 - (g2*t^6.48)/g4^3 - (g2*t^6.48)/g5^3 + (g1^3*g3^3*g4^6*g5^3*t^6.48)/g2 + (g1^3*g3^3*g4^3*g5^6*t^6.48)/g2 - (g1*g3*g4*t^6.49)/(g2*g5^2) - (g1*g3*g5*t^6.49)/(g2*g4^2) + g1^2*g2*g3^5*g4^2*g5^2*t^6.59 + g1^5*g2*g3^2*g4^2*g5^2*t^6.6 + (g1^3*g3^6*g4^3*g5^3*t^6.61)/g2 + (g2^2*t^6.69)/g1^6 + g4^6*g5^6*t^6.7 + (g4*g5*t^6.71)/(g1^2*g3^2) + (g2*t^6.81)/(g1^10*g3^7*g4*g5) + g1^3*g4^6*g5^3*t^6.83 + g3^3*g4^6*g5^3*t^6.83 + g1^3*g4^3*g5^6*t^6.83 + g3^3*g4^3*g5^6*t^6.83 + g3^6*g4^6*t^6.95 + g3^6*g4^3*g5^3*t^6.95 + g3^6*g5^6*t^6.95 + g1^3*g3^3*g4^6*t^6.96 + 2*g1^3*g3^3*g4^3*g5^3*t^6.96 + g1^3*g3^3*g5^6*t^6.96 + g1^6*g4^6*t^6.97 + g1^6*g4^3*g5^3*t^6.97 + g1^6*g5^6*t^6.97 + (g2*g4^4*t^7.05)/(g1^5*g3^2*g5^2) + (2*g2*g4*g5*t^7.05)/(g1^5*g3^2) + (g2*g5^4*t^7.05)/(g1^5*g3^2*g4^2) + t^7.17/(g1^9*g3^9) + (g2*g3*g4*t^7.18)/(g1^5*g5^2) + (g2*g3*g5*t^7.18)/(g1^5*g4^2) + g2*g4^6*g5^3*t^7.18 + g2*g4^3*g5^6*t^7.18 + (g1*g3*g4^7*g5^4*t^7.19)/g2 + (g1*g3*g4^4*g5^7*t^7.19)/g2 - (g4^2*t^7.2)/(g1*g2*g3*g5) - (g5^2*t^7.2)/(g1*g2*g3*g4) + g2*g3^3*g4^6*t^7.3 + (g2*g3^4*t^7.3)/(g1^5*g4^2*g5^2) + 3*g2*g3^3*g4^3*g5^3*t^7.3 + g2*g3^3*g5^6*t^7.3 + g1^3*g2*g4^6*t^7.31 + 2*g1^3*g2*g4^3*g5^3*t^7.31 + g1^3*g2*g5^6*t^7.31 + (g1*g3^4*g4^7*g5*t^7.32)/g2 + (2*g1*g3^4*g4^4*g5^4*t^7.32)/g2 + (g1*g3^4*g4*g5^7*t^7.32)/g2 - (g3^2*t^7.33)/(g1*g2*g4*g5) + (g1^4*g3*g4^7*g5*t^7.33)/g2 + (g1^4*g3*g4^4*g5^4*t^7.33)/g2 + (g1^4*g3*g4*g5^7*t^7.33)/g2 - (g1^2*t^7.34)/(g2*g3*g4*g5) + (g2^2*g4*g5*t^7.4)/(g1^8*g3^2) + (g4^5*t^7.42)/(g1^4*g3^4*g5) + (2*g4^2*g5^2*t^7.42)/(g1^4*g3^4) + (g5^5*t^7.42)/(g1^4*g3^4*g4) + g2*g3^6*g4^3*t^7.43 + g2*g3^6*g5^3*t^7.43 + g1^3*g2*g3^3*g4^3*t^7.44 + (g1*g3^7*g4^4*g5*t^7.44)/g2 + g1^3*g2*g3^3*g5^3*t^7.44 + (g1*g3^7*g4*g5^4*t^7.44)/g2 + g1^6*g2*g4^3*t^7.45 + g1^6*g2*g5^3*t^7.45 + (g2^2*g3*g4*t^7.52)/(g1^8*g5^2) + (g2^2*g3*g5*t^7.52)/(g1^8*g4^2) + (g2^2*g4*t^7.53)/(g1^5*g3^2*g5^2) + (g2^2*g5*t^7.53)/(g1^5*g3^2*g4^2) + g2^2*g4^6*t^7.66 + g2^2*g4^3*g5^3*t^7.66 + g2^2*g5^6*t^7.66 + g1*g3*g4^7*g5*t^7.67 + 3*g1*g3*g4^4*g5^4*t^7.67 + g1*g3*g4*g5^7*t^7.67 - (g4^2*t^7.68)/(g1*g3*g5^4) - (3*t^7.68)/(g1*g3*g4*g5) - (g5^2*t^7.68)/(g1*g3*g4^4) + (g1^2*g3^2*g4^8*g5^2*t^7.68)/g2^2 + (g1^2*g3^2*g4^5*g5^5*t^7.68)/g2^2 + (g1^2*g3^2*g4^2*g5^8*t^7.68)/g2^2 + (g2*g4^2*g5^2*t^7.76)/(g1^7*g3^4) + g2^2*g3^3*g4^3*t^7.78 + g2^2*g3^3*g5^3*t^7.78 + g1^3*g2^2*g4^3*t^7.79 + 2*g1*g3^4*g4^4*g5*t^7.79 + g1^3*g2^2*g5^3*t^7.79 + 2*g1*g3^4*g4*g5^4*t^7.79 - (g3^2*t^7.8)/(g1*g4*g5^4) - (g3^2*t^7.8)/(g1*g4^4*g5) + g1^4*g3*g4^4*g5*t^7.8 + g1^4*g3*g4*g5^4*t^7.8 - (g1^2*t^7.81)/(g3*g4*g5^4) - (g1^2*t^7.81)/(g3*g4^4*g5) + (g1^2*g3^5*g4^5*g5^2*t^7.81)/g2^2 + (g1^2*g3^5*g4^2*g5^5*t^7.81)/g2^2 + (g2^3*g4*t^7.88)/(g1^8*g3^2*g5^2) + (g2^3*g5*t^7.88)/(g1^8*g3^2*g4^2) + (g2*g4^2*t^7.89)/(g1^7*g3*g5) + (g2*g5^2*t^7.89)/(g1^7*g3*g4) + g2^2*g3^6*t^7.91 + g1^6*g2^2*t^7.92 + g1^3*g2^2*g3^3*t^7.92 + g1*g3^7*g4*g5*t^7.92 + g1^6*g3^6*g4^6*g5^6*t^7.92 + (g1^2*g3^8*g4^2*g5^2*t^7.93)/g2^2 + (g2^3*g3*t^8.)/(g1^8*g4^2*g5^2) + (g2^3*t^8.01)/(g1^5*g3^2*g4^2*g5^2) + (g2*g3*g4^4*g5^4*t^8.01)/g1^2 - (g2*g4^2*t^8.02)/(g1^4*g3*g5^4) - (5*g2*t^8.02)/(g1^4*g3*g4*g5) - (g2*g5^2*t^8.02)/(g1^4*g3*g4^4) - (g2*t^8.03)/(g1*g3^4*g4*g5) + (g2^4*t^8.09)/(g1^16*g3^4*g4^4*g5^4) + (g4^3*g5^3*t^8.13)/(g1^6*g3^6) + (g2*g3^4*g4^4*g5*t^8.14)/g1^2 + (g2*g3^4*g4*g5^4*t^8.14)/g1^2 - (g2*g3^2*t^8.15)/(g1^4*g4*g5^4) - (g2*g3^2*t^8.15)/(g1^4*g4^4*g5) + g1*g2*g3*g4^4*g5*t^8.15 + g1*g2*g3*g4*g5^4*t^8.15 - (g2*t^8.16)/(g1*g3*g4*g5^4) - (g2*t^8.16)/(g1*g3*g4^4*g5) + (g2^2*g4^2*t^8.24)/(g1^7*g3^4*g5) + (g2^2*g5^2*t^8.24)/(g1^7*g3^4*g4) + (g4^3*t^8.26)/(g1^6*g3^3) + (g5^3*t^8.26)/(g1^6*g3^3) - (g1^5*g3^2*g4^2*g5^2*t^8.3)/g2 + (g2^2*t^8.37)/(g1^7*g3*g4*g5) + (g4^8*g5^2*t^8.38)/(g1*g3) + (2*g4^5*g5^5*t^8.38)/(g1*g3) + (g4^2*g5^8*t^8.38)/(g1*g3) - (5*t^8.39)/(g1^3*g3^3) - (g4^3*t^8.39)/(g1^3*g3^3*g5^3) - (g5^3*t^8.39)/(g1^3*g3^3*g4^3) + (g2^3*t^8.46)/(g1^15*g3^6*g4^3*g5^3) + (g2^2*g3*g4^4*g5*t^8.49)/g1^2 + (g2^2*g3*g4*g5^4*t^8.49)/g1^2 - (g2^2*t^8.5)/(g1^4*g3*g4*g5^4) - (g2^2*t^8.5)/(g1^4*g3*g4^4*g5) + (g3^2*g4^8*t^8.51)/(g1*g5) + (3*g3^2*g4^5*g5^2*t^8.51)/g1 + (3*g3^2*g4^2*g5^5*t^8.51)/g1 + (g3^2*g5^8*t^8.51)/(g1*g4) - t^8.52/(g1^3*g4^3) - t^8.52/(g1^3*g5^3) + (g1^2*g4^8*t^8.52)/(g3*g5) + (2*g1^2*g4^5*g5^2*t^8.52)/g3 + (2*g1^2*g4^2*g5^5*t^8.52)/g3 + (g1^2*g5^8*t^8.52)/(g3*g4) + (g2*g4^3*t^8.61)/(g1^6*g3^6) + (g2*g5^3*t^8.61)/(g1^6*g3^6) + (g2^2*g3^4*g4*g5*t^8.62)/g1^2 + (g4^4*g5*t^8.62)/(g1^5*g2*g3^5) + (g4*g5^4*t^8.62)/(g1^5*g2*g3^5) + (g3^5*g4^5*t^8.63)/(g1*g5) + (2*g3^5*g4^2*g5^2*t^8.63)/g1 + (g3^5*g5^5*t^8.63)/(g1*g4) + g1^4*g3^4*g4^7*g5^7*t^8.63 - 3*g1^2*g3^2*g4^2*g5^2*t^8.64 + t^8.65/g4^6 + t^8.65/g5^6 + t^8.65/(g4^3*g5^3) + (g1^5*g4^5*t^8.65)/(g3*g5) + (g1^5*g4^2*g5^2*t^8.65)/g3 - (g1^3*g3^3*g4^3*g5^3*t^8.65)/g2^2 + (g1^5*g5^5*t^8.65)/(g3*g4) + (g2^3*t^8.71)/(g1^10*g3*g4*g5) + (g2*g4^5*g5^5*t^8.72)/(g1^4*g3) + (g2*t^8.73)/(g1^6*g3^3) + (g3^8*g4^2*t^8.75)/(g1*g5) + (g3^8*g5^2*t^8.75)/(g1*g4) + g1^4*g3^7*g4^7*g5^4*t^8.75 + g1^4*g3^7*g4^4*g5^7*t^8.75 - (g4*g5*t^8.76)/(g1^2*g2*g3^5) + g1^7*g3^4*g4^7*g5^4*t^8.76 + g1^7*g3^4*g4^4*g5^7*t^8.76 + (g1^8*g4^2*t^8.78)/(g3*g5) + (g1^8*g5^2*t^8.78)/(g3*g4) + (g2^2*t^8.83)/(g1^14*g3^8*g4^2*g5^2) + (g2*g3^2*g4^5*g5^2*t^8.85)/g1^4 + (g2*g3^2*g4^2*g5^5*t^8.85)/g1^4 + (g2*g4^8*t^8.86)/(g1*g3*g5) + (3*g2*g4^5*g5^2*t^8.86)/(g1*g3) + (3*g2*g4^2*g5^5*t^8.86)/(g1*g3) + (g2*g5^8*t^8.86)/(g1*g3*g4) - (g2*t^8.87)/(g1^3*g3^3*g4^3) + (g4^9*t^8.87)/g2 - (g2*t^8.87)/(g1^3*g3^3*g5^3) + (2*g4^6*g5^3*t^8.87)/g2 + (2*g4^3*g5^6*t^8.87)/g2 + (g5^9*t^8.87)/g2 - (g4*t^8.88)/(g1^2*g2*g3^2*g5^2) - (g5*t^8.88)/(g1^2*g2*g3^2*g4^2) + (g2*g3^5*g4^5*t^8.97)/(g1^4*g5) + (g2*g3^5*g4^2*g5^2*t^8.97)/g1^4 + (g2*g3^5*g5^5*t^8.97)/(g1^4*g4) + (2*g2*g3^2*g4^5*t^8.98)/(g1*g5) + (3*g2*g3^2*g4^2*g5^2*t^8.98)/g1 + (2*g2*g3^2*g5^5*t^8.98)/(g1*g4) + (2*g1^2*g2*g4^5*t^8.99)/(g3*g5) + (2*g1^2*g2*g4^2*g5^2*t^8.99)/g3 + (2*g1^2*g2*g5^5*t^8.99)/(g3*g4) - t^4.68/(g1*g3*g4*g5*y) - (g2*t^6.7)/(g1^5*g3^2*g4^2*g5^2*y) - t^7.07/(g1^4*g3^4*g4*g5*y) + (g2*t^7.41)/(g1^7*g3^4*g4*g5*y) + (g2*g3*g4*g5*t^7.66)/(g1^2*y) + (g4^2*g5^2*t^8.03)/(g1*g3*y) + (g1^2*g3^2*t^8.29)/(g4*g5*y) + (g2*g4^2*g5^2*t^8.37)/(g1^4*g3*y) + (g2*g3^2*g4^2*t^8.5)/(g1^4*g5*y) + (g2*g3^2*g5^2*t^8.5)/(g1^4*g4*y) + (g2*g4^2*t^8.51)/(g1*g3*g5*y) + (g2*g5^2*t^8.51)/(g1*g3*g4*y) + (g1^3*t^8.66)/(g2*y) - (g2^2*t^8.73)/(g1^9*g3^3*g4^3*g5^3*y) + (g4^3*g5^3*t^8.74)/(g1^3*g3^3*y) + (g2^2*g4^2*t^8.85)/(g1^4*g3*g5*y) + (g2^2*g5^2*t^8.85)/(g1^4*g3*g4*y) + (2*g4^3*t^8.87)/(g1^3*y) + (2*g5^3*t^8.87)/(g1^3*y) + (g4^3*t^8.88)/(g3^3*y) + (g5^3*t^8.88)/(g3^3*y) + (g2^2*g3^2*t^8.98)/(g1^4*g4*g5*y) + (g3^3*t^8.99)/(g1^3*y) + (g2^2*t^8.99)/(g1*g3*g4*g5*y) + (g1^2*g3^2*g4^5*g5^5*t^8.99)/y - (t^4.68*y)/(g1*g3*g4*g5) - (g2*t^6.7*y)/(g1^5*g3^2*g4^2*g5^2) - (t^7.07*y)/(g1^4*g3^4*g4*g5) + (g2*t^7.41*y)/(g1^7*g3^4*g4*g5) + (g2*g3*g4*g5*t^7.66*y)/g1^2 + (g4^2*g5^2*t^8.03*y)/(g1*g3) + (g1^2*g3^2*t^8.29*y)/(g4*g5) + (g2*g4^2*g5^2*t^8.37*y)/(g1^4*g3) + (g2*g3^2*g4^2*t^8.5*y)/(g1^4*g5) + (g2*g3^2*g5^2*t^8.5*y)/(g1^4*g4) + (g2*g4^2*t^8.51*y)/(g1*g3*g5) + (g2*g5^2*t^8.51*y)/(g1*g3*g4) + (g1^3*t^8.66*y)/g2 - (g2^2*t^8.73*y)/(g1^9*g3^3*g4^3*g5^3) + (g4^3*g5^3*t^8.74*y)/(g1^3*g3^3) + (g2^2*g4^2*t^8.85*y)/(g1^4*g3*g5) + (g2^2*g5^2*t^8.85*y)/(g1^4*g3*g4) + (2*g4^3*t^8.87*y)/g1^3 + (2*g5^3*t^8.87*y)/g1^3 + (g4^3*t^8.88*y)/g3^3 + (g5^3*t^8.88*y)/g3^3 + (g2^2*g3^2*t^8.98*y)/(g1^4*g4*g5) + (g3^3*t^8.99*y)/g1^3 + (g2^2*t^8.99*y)/(g1*g3*g4*g5) + g1^2*g3^2*g4^5*g5^5*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55688 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ | 0.8748 | 1.0812 | 0.8092 | [X:[], M:[0.697, 0.8576], q:[0.7229, 0.5801, 0.7059], qb:[0.5688, 0.5688, 0.5688], phi:[0.5712]] | t^2.09 + t^2.57 + 3*t^3.41 + 3*t^3.45 + 3*t^3.82 + t^3.86 + 3*t^3.87 + t^4.18 + t^4.29 + t^4.66 + 6*t^5.13 + t^5.15 + 3*t^5.16 + t^5.19 + 3*t^5.5 + 3*t^5.54 + 3*t^5.92 + t^5.95 + 3*t^5.99 - 11*t^6. - t^4.71/y - t^4.71*y | detail |