Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55740 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{3}$ | 0.8612 | 1.0536 | 0.8174 | [M:[0.6696, 0.8272], q:[0.7415, 0.7434, 0.587], qb:[0.7424, 0.5394, 0.5858], phi:[0.5151]] | [M:[[-1, -5, 1, 1], [0, -5, 1, 0]], q:[[-1, 2, 0, 0], [1, 0, 0, 0], [0, 5, -1, -1]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, -2, 0, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{1}\tilde{q}_{3}$, ${ }M_{1}q_{1}q_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$ | ${}$ | -4 | t^2.009 + t^2.482 + t^3.091 + t^3.376 + t^3.379 + t^3.843 + t^3.845 + t^3.848 + t^3.982 + 2*t^3.985 + 2*t^3.988 + t^4.018 + t^4.452 + t^4.455 + t^4.457 + t^4.49 + t^4.782 + t^4.921 + t^4.924 + t^4.963 + t^5.06 + t^5.064 + t^5.067 + t^5.1 + t^5.384 + t^5.388 + t^5.572 + t^5.851 + t^5.854 + t^5.857 + t^5.991 + 2*t^5.994 - 4*t^6. - t^6.003 - t^6.004 + t^6.027 - t^6.139 - t^6.143 + t^6.182 + t^6.324 + t^6.327 + t^6.33 + t^6.461 + t^6.463 + 2*t^6.466 + t^6.47 - t^6.473 + t^6.499 - t^6.606 - t^6.609 - t^6.612 + t^6.751 + t^6.755 + t^6.758 + t^6.79 + t^6.93 + 2*t^6.933 + t^6.936 + t^6.939 + t^6.972 + t^7.069 + t^7.073 + t^7.076 - t^7.082 + t^7.108 + t^7.218 + t^7.221 + t^7.222 + t^7.224 + t^7.225 + t^7.227 + t^7.263 + t^7.357 + t^7.36 + t^7.361 + t^7.363 + t^7.364 + t^7.365 + t^7.367 + t^7.393 + t^7.397 + t^7.445 - t^7.545 + t^7.581 + t^7.691 + t^7.694 + t^7.697 + t^7.824 + 2*t^7.827 + t^7.828 + 2*t^7.83 + 2*t^7.831 + 2*t^7.833 + t^7.834 + t^7.836 + t^7.837 + t^7.86 + t^7.863 + t^7.866 + t^7.872 + t^7.964 + 2*t^7.967 + 2*t^7.97 + t^7.971 + t^7.972 + t^7.974 + t^7.975 + t^8. + t^8.002 + t^8.003 - 4*t^8.009 - t^8.012 + t^8.015 + t^8.035 + t^8.054 - t^8.148 + t^8.151 - t^8.152 + t^8.155 + t^8.157 + t^8.158 + t^8.161 + t^8.19 + t^8.294 + 2*t^8.297 + 2*t^8.3 + t^8.303 + t^8.304 + t^8.306 + t^8.333 + t^8.336 + t^8.339 + t^8.434 + t^8.436 + 2*t^8.437 + 2*t^8.439 + t^8.44 + t^8.442 + t^8.443 + t^8.445 + t^8.446 + t^8.469 + t^8.472 + 2*t^8.475 - 4*t^8.482 - t^8.484 + t^8.508 - t^8.615 - t^8.618 - t^8.621 + t^8.624 + t^8.627 + t^8.63 + t^8.663 + t^8.76 + 3*t^8.764 + t^8.766 + 2*t^8.767 + t^8.769 + t^8.77 + t^8.799 + t^8.806 + t^8.809 + t^8.811 + t^8.903 + 2*t^8.906 + 2*t^8.909 + t^8.91 + t^8.913 + t^8.939 + 2*t^8.942 + t^8.945 + t^8.948 - t^8.954 + t^8.981 - t^4.545/y - t^6.554/y - t^7.027/y + t^7.455/y + t^7.49/y - t^7.636/y + t^8.064/y + t^8.1/y + t^8.384/y + t^8.388/y + t^8.537/y - t^8.563/y + t^8.572/y + t^8.851/y + t^8.854/y + (2*t^8.857)/y + t^8.861/y + t^8.991/y + (2*t^8.994)/y + t^8.996/y + t^8.997/y - t^4.545*y - t^6.554*y - t^7.027*y + t^7.455*y + t^7.49*y - t^7.636*y + t^8.064*y + t^8.1*y + t^8.384*y + t^8.388*y + t^8.537*y - t^8.563*y + t^8.572*y + t^8.851*y + t^8.854*y + 2*t^8.857*y + t^8.861*y + t^8.991*y + 2*t^8.994*y + t^8.996*y + t^8.997*y | (g3*g4*t^2.009)/(g1*g2^5) + (g3*t^2.482)/g2^5 + t^3.091/g2^4 + g3*g4*t^3.376 + (g2^5*t^3.379)/g4 + (g2^2*g3*t^3.843)/g1 + g2*g3*t^3.845 + g1*g3*t^3.848 + (g2^2*g4*t^3.982)/g1 + (g2^7*t^3.985)/(g1*g3*g4) + g2*g4*t^3.985 + (g2^6*t^3.988)/(g3*g4) + g1*g4*t^3.988 + (g3^2*g4^2*t^4.018)/(g1^2*g2^10) + (g2^3*t^4.452)/g1 + g2^2*t^4.455 + g1*g2*t^4.457 + (g3^2*g4*t^4.49)/(g1*g2^10) + (g3^2*t^4.782)/g2^2 + (g3*g4*t^4.921)/g2^2 + (g2^3*t^4.924)/g4 + (g3^2*t^4.963)/g2^10 + (g4^2*t^5.06)/g2^2 + (g2^3*t^5.064)/g3 + (g2^8*t^5.067)/(g3^2*g4^2) + (g3*g4*t^5.1)/(g1*g2^9) + (g3^2*g4^2*t^5.384)/(g1*g2^5) + (g3*t^5.388)/g1 + (g3*t^5.572)/g2^9 + (g3^2*g4*t^5.851)/(g1^2*g2^3) + (g3^2*g4*t^5.854)/(g1*g2^4) + (g3^2*g4*t^5.857)/g2^5 + (g3*g4^2*t^5.991)/(g1^2*g2^3) + (g2^2*t^5.994)/g1^2 + (g3*g4^2*t^5.994)/(g1*g2^4) - 4*t^6. - (g1*t^6.003)/g2 - (g2^5*t^6.004)/(g3*g4^2) + (g3^3*g4^3*t^6.027)/(g1^3*g2^15) - (g4*t^6.139)/g3 - (g2^5*t^6.143)/(g3^2*g4) + t^6.182/g2^8 + (g3^2*t^6.324)/(g1*g2^3) + (g3^2*t^6.327)/g2^4 + (g1*g3^2*t^6.33)/g2^5 + (g3*g4*t^6.461)/(g1^2*g2^2) + (g3*g4*t^6.463)/(g1*g2^3) + (2*g3*g4*t^6.466)/g2^4 + (g2*t^6.47)/g4 - (g1*t^6.473)/g4 + (g3^3*g4^2*t^6.499)/(g1^2*g2^15) - (g2^2*t^6.606)/(g1*g3) - (g2*t^6.609)/g3 - (g1*t^6.612)/g3 + g3^2*g4^2*t^6.751 + g2^5*g3*t^6.755 + (g2^10*t^6.758)/g4^2 + (g3^3*g4*t^6.79)/(g1*g2^7) + (g3^2*g4^2*t^6.93)/(g1*g2^7) + (2*g3*t^6.933)/(g1*g2^2) + (g3*t^6.936)/g2^3 + (g1*g3*t^6.939)/g2^4 + (g3^3*g4*t^6.972)/(g1*g2^15) + (g3*g4^3*t^7.069)/(g1*g2^7) + (g4*t^7.073)/(g1*g2^2) + (g2^3*t^7.076)/(g1*g3*g4) - (g1*g2*t^7.082)/(g3*g4) + (g3^2*g4^2*t^7.108)/(g1^2*g2^14) + (g2^2*g3^2*g4*t^7.218)/g1 + g2*g3^2*g4*t^7.221 + (g2^7*g3*t^7.222)/(g1*g4) + g1*g3^2*g4*t^7.224 + (g2^6*g3*t^7.225)/g4 + (g1*g2^5*g3*t^7.227)/g4 + (g3^3*t^7.263)/g2^7 + (g2^2*g3*g4^2*t^7.357)/g1 + g2*g3*g4^2*t^7.36 + (g2^7*t^7.361)/g1 + g1*g3*g4^2*t^7.363 + g2^6*t^7.364 + (g2^12*t^7.365)/(g1*g3*g4^2) + (g2^11*t^7.367)/(g3*g4^2) + (g3^3*g4^3*t^7.393)/(g1^2*g2^10) + (g3^2*g4*t^7.397)/(g1^2*g2^5) + (g3^3*t^7.445)/g2^15 - t^7.545/g2^2 + (g3^2*g4*t^7.581)/(g1*g2^14) + (g2^4*g3^2*t^7.685)/g1^2 - (g4*t^7.685)/(g2^2*g3) + (g2^3*g3^2*t^7.688)/g1 - (g2^3*t^7.688)/(g3^2*g4) + g2^2*g3^2*t^7.691 + g1*g2*g3^2*t^7.694 + g1^2*g3^2*t^7.697 + (g2^4*g3*g4*t^7.824)/g1^2 + (2*g2^3*g3*g4*t^7.827)/g1 + (g2^9*t^7.828)/(g1^2*g4) + 2*g2^2*g3*g4*t^7.83 + (2*g2^8*t^7.831)/(g1*g4) + 2*g1*g2*g3*g4*t^7.833 + (g2^7*t^7.834)/g4 + g1^2*g3*g4*t^7.836 + (g1*g2^6*t^7.837)/g4 + (g3^3*g4^2*t^7.86)/(g1^3*g2^8) + (g3^3*g4^2*t^7.863)/(g1^2*g2^9) + (g3^3*g4^2*t^7.866)/(g1*g2^10) + (g3^2*t^7.872)/g2^6 + (g2^4*g4^2*t^7.964)/g1^2 + (g2^9*t^7.967)/(g1^2*g3) + (g2^3*g4^2*t^7.967)/g1 + (g2^8*t^7.97)/(g1*g3) + g2^2*g4^2*t^7.97 + (g2^14*t^7.971)/(g1^2*g3^2*g4^2) + g1*g2*g4^2*t^7.972 + (g2^13*t^7.974)/(g1*g3^2*g4^2) + g1^2*g4^2*t^7.975 + (g3^2*g4^3*t^8.)/(g1^3*g2^8) + (g3^2*g4^3*t^8.002)/(g1^2*g2^9) + (g3*g4*t^8.003)/(g1^3*g2^3) - (4*g3*g4*t^8.009)/(g1*g2^5) - t^8.012/(g1*g4) + t^8.015/(g2*g4) + (g3^4*g4^4*t^8.035)/(g1^4*g2^20) + (g3^2*t^8.054)/g2^14 - (g4^2*t^8.148)/(g1*g2^5) + (g4^2*t^8.151)/g2^6 - t^8.152/(g1*g3) + t^8.155/(g2*g3) + (g3^3*g4*t^8.157)/g2^2 + (g2^4*t^8.158)/(g3^2*g4^2) + (g2^3*g3^2*t^8.161)/g4 + (g3*g4*t^8.19)/(g1*g2^13) + (g2^5*g3*t^8.294)/g1^2 + (g2^4*g3*t^8.297)/g1 + (g3^2*g4^2*t^8.297)/g2^2 + 2*g2^3*g3*t^8.3 + g1*g2^2*g3*t^8.303 + (g2^8*t^8.304)/g4^2 + g1^2*g2*g3*t^8.306 + (g3^3*g4*t^8.333)/(g1^2*g2^8) + (g3^3*g4*t^8.336)/(g1*g2^9) + (g3^3*g4*t^8.339)/g2^10 + (g2^5*g4*t^8.434)/g1^2 + (g3*g4^3*t^8.436)/g2^2 + (g2^10*t^8.437)/(g1^2*g3*g4) + (g2^4*g4*t^8.437)/g1 + 2*g2^3*g4*t^8.439 + (g2^9*t^8.44)/(g1*g3*g4) + g1*g2^2*g4*t^8.442 + (g2^8*t^8.443)/(g3*g4) + g1^2*g2*g4*t^8.445 + (g2^13*t^8.446)/(g3^2*g4^3) + (g3^2*g4^2*t^8.469)/(g1^3*g2^7) + (g3^2*g4^2*t^8.472)/(g1^2*g2^8) + (2*g3^2*g4^2*t^8.475)/(g1*g2^9) - (4*g3*t^8.482)/g2^5 - (g1*g3*t^8.484)/g2^6 + (g3^4*g4^3*t^8.508)/(g1^3*g2^20) - (g4*t^8.615)/(g1^2*g2^3) - (g4*t^8.618)/(g1*g2^4) - (g4*t^8.621)/g2^5 + (g3^3*t^8.624)/g1 + (g3^3*t^8.627)/g2 + (g1*g3^3*t^8.63)/g2^2 + (g3*t^8.663)/g2^13 + (g3^3*g4^3*t^8.76)/(g1*g2^5) + t^8.764/g3^2 + (2*g3^2*g4*t^8.764)/g1 + (g3^2*g4*t^8.766)/g2 + (2*g2^5*g3*t^8.767)/(g1*g4) + (g1*g3^2*g4*t^8.769)/g2^2 + (g2^4*g3*t^8.77)/g4 + (g3^4*g4^2*t^8.799)/(g1^2*g2^12) + (g3^3*t^8.806)/(g1*g2^8) + (g3^3*t^8.809)/g2^9 + (g1*g3^3*t^8.811)/g2^10 + (g3*g4^2*t^8.903)/g1 + (g2^5*t^8.906)/g1 + (g3*g4^2*t^8.906)/g2 + g2^4*t^8.909 + (g1*g3*g4^2*t^8.909)/g2^2 + (g2^10*t^8.91)/(g1*g3*g4^2) + (g2^9*t^8.913)/(g3*g4^2) + (g3^3*g4^3*t^8.939)/(g1^2*g2^12) + (2*g3^2*g4*t^8.942)/(g1^2*g2^7) + (g3^2*g4*t^8.945)/(g1*g2^8) + (g3^2*g4*t^8.948)/g2^9 - (g1*g3*t^8.954)/(g2^5*g4) + (g3^4*g4^2*t^8.981)/(g1^2*g2^20) - t^4.545/(g2^2*y) - (g3*g4*t^6.554)/(g1*g2^7*y) - (g3*t^7.027)/(g2^7*y) + (g2^2*t^7.455)/y + (g3^2*g4*t^7.49)/(g1*g2^10*y) - t^7.636/(g2^6*y) + (g2^3*t^8.064)/(g3*y) + (g3*g4*t^8.1)/(g1*g2^9*y) + (g3^2*g4^2*t^8.384)/(g1*g2^5*y) + (g3*t^8.388)/(g1*y) + (g1*g2^3*t^8.537)/(g3*g4*y) - (g3^2*g4^2*t^8.563)/(g1^2*g2^12*y) + (g3*t^8.572)/(g2^9*y) + (g3^2*g4*t^8.851)/(g1^2*g2^3*y) + (g3^2*g4*t^8.854)/(g1*g2^4*y) + (2*g3^2*g4*t^8.857)/(g2^5*y) + (g3*t^8.861)/(g4*y) + (g3*g4^2*t^8.991)/(g1^2*g2^3*y) + (g2^2*t^8.994)/(g1^2*y) + (g3*g4^2*t^8.994)/(g1*g2^4*y) + (g3*g4^2*t^8.996)/(g2^5*y) + (g2*t^8.997)/(g1*y) - (t^4.545*y)/g2^2 - (g3*g4*t^6.554*y)/(g1*g2^7) - (g3*t^7.027*y)/g2^7 + g2^2*t^7.455*y + (g3^2*g4*t^7.49*y)/(g1*g2^10) - (t^7.636*y)/g2^6 + (g2^3*t^8.064*y)/g3 + (g3*g4*t^8.1*y)/(g1*g2^9) + (g3^2*g4^2*t^8.384*y)/(g1*g2^5) + (g3*t^8.388*y)/g1 + (g1*g2^3*t^8.537*y)/(g3*g4) - (g3^2*g4^2*t^8.563*y)/(g1^2*g2^12) + (g3*t^8.572*y)/g2^9 + (g3^2*g4*t^8.851*y)/(g1^2*g2^3) + (g3^2*g4*t^8.854*y)/(g1*g2^4) + (2*g3^2*g4*t^8.857*y)/g2^5 + (g3*t^8.861*y)/g4 + (g3*g4^2*t^8.991*y)/(g1^2*g2^3) + (g2^2*t^8.994*y)/g1^2 + (g3*g4^2*t^8.994*y)/(g1*g2^4) + (g3*g4^2*t^8.996*y)/g2^5 + (g2*t^8.997*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55678 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ | 0.8484 | 1.0335 | 0.8208 | [M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] | t^2.081 + t^3.187 + t^3.324 + 2*t^3.354 + 2*t^3.841 + 2*t^3.865 + t^3.87 + 2*t^3.89 + t^3.895 + t^4.162 + t^4.382 + t^4.406 + t^4.431 + 3*t^4.918 + 2*t^4.947 + t^4.977 + t^5.268 + t^5.405 + 2*t^5.435 + 2*t^5.922 + 2*t^5.946 + t^5.951 - 6*t^6. - t^4.594/y - t^4.594*y | detail |