Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55740 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ + $ M_2q_3\tilde{q}_3$ 0.8612 1.0536 0.8174 [X:[], M:[0.6696, 0.8272], q:[0.7415, 0.7434, 0.587], qb:[0.7424, 0.5394, 0.5858], phi:[0.5151]] [X:[], M:[[-1, -5, 1, 1], [0, -5, 1, 0]], q:[[-1, 2, 0, 0], [1, 0, 0, 0], [0, 5, -1, -1]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, -2, 0, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ q_2\tilde{q}_3$, $ M_1^2$, $ q_1q_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3^2$, $ M_1\phi_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1q_1q_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_1q_1\tilde{q}_3$ $M_1q_3\tilde{q}_1$ -6 t^2.01 + t^2.48 + t^3.09 + 2*t^3.38 + t^3.84 + 2*t^3.85 + 2*t^3.98 + 3*t^3.99 + t^4.02 + 2*t^4.45 + t^4.46 + t^4.49 + t^4.78 + 2*t^4.92 + t^4.96 + 2*t^5.06 + t^5.07 + t^5.1 + t^5.38 + t^5.39 + t^5.57 + 2*t^5.85 + t^5.86 + 3*t^5.99 - 6*t^6. + t^6.03 - 2*t^6.14 + t^6.18 + t^6.32 + 2*t^6.33 + 2*t^6.46 + 2*t^6.47 + t^6.5 - 3*t^6.61 + 2*t^6.75 + t^6.76 + t^6.79 + 3*t^6.93 + 2*t^6.94 + t^6.97 + 2*t^7.07 + t^7.11 + 5*t^7.22 + t^7.23 + t^7.26 + 6*t^7.36 + t^7.37 + t^7.39 + t^7.4 + t^7.44 - t^7.55 + t^7.58 - t^7.68 + 3*t^7.69 + t^7.7 + t^7.82 + 10*t^7.83 + 2*t^7.84 + 2*t^7.86 + 2*t^7.87 + t^7.96 + 7*t^7.97 + t^7.98 + 3*t^8. - 5*t^8.01 + t^8.02 + t^8.04 + t^8.05 + 3*t^8.16 + t^8.19 + t^8.29 + 6*t^8.3 + t^8.31 + t^8.33 + 2*t^8.34 + t^8.43 + 8*t^8.44 + 2*t^8.45 + 2*t^8.47 - 3*t^8.48 + t^8.51 - 2*t^8.62 + 2*t^8.63 + t^8.66 + 4*t^8.76 + 5*t^8.77 + t^8.8 + 3*t^8.81 + t^8.9 + 6*t^8.91 + 3*t^8.94 + t^8.95 + t^8.98 - t^4.55/y - t^6.55/y - t^7.03/y + t^7.45/y + t^7.49/y - t^7.64/y + t^8.06/y + t^8.1/y + t^8.38/y + t^8.39/y + t^8.54/y - t^8.56/y + t^8.57/y + (2*t^8.85)/y + (3*t^8.86)/y + (3*t^8.99)/y - t^4.55*y - t^6.55*y - t^7.03*y + t^7.45*y + t^7.49*y - t^7.64*y + t^8.06*y + t^8.1*y + t^8.38*y + t^8.39*y + t^8.54*y - t^8.56*y + t^8.57*y + 2*t^8.85*y + 3*t^8.86*y + 3*t^8.99*y (g3*g4*t^2.01)/(g1*g2^5) + (g3*t^2.48)/g2^5 + t^3.09/g2^4 + (g2^5*t^3.38)/g4 + g3*g4*t^3.38 + (g2^2*g3*t^3.84)/g1 + g1*g3*t^3.85 + g2*g3*t^3.85 + g2*g4*t^3.98 + (g2^2*g4*t^3.98)/g1 + (g2^6*t^3.99)/(g3*g4) + (g2^7*t^3.99)/(g1*g3*g4) + g1*g4*t^3.99 + (g3^2*g4^2*t^4.02)/(g1^2*g2^10) + g2^2*t^4.45 + (g2^3*t^4.45)/g1 + g1*g2*t^4.46 + (g3^2*g4*t^4.49)/(g1*g2^10) + (g3^2*t^4.78)/g2^2 + (g2^3*t^4.92)/g4 + (g3*g4*t^4.92)/g2^2 + (g3^2*t^4.96)/g2^10 + (g2^3*t^5.06)/g3 + (g4^2*t^5.06)/g2^2 + (g2^8*t^5.07)/(g3^2*g4^2) + (g3*g4*t^5.1)/(g1*g2^9) + (g3^2*g4^2*t^5.38)/(g1*g2^5) + (g3*t^5.39)/g1 + (g3*t^5.57)/g2^9 + (g3^2*g4*t^5.85)/(g1*g2^4) + (g3^2*g4*t^5.85)/(g1^2*g2^3) + (g3^2*g4*t^5.86)/g2^5 + (g2^2*t^5.99)/g1^2 + (g3*g4^2*t^5.99)/(g1*g2^4) + (g3*g4^2*t^5.99)/(g1^2*g2^3) - 4*t^6. - (g1*t^6.)/g2 - (g2^5*t^6.)/(g3*g4^2) + (g3^3*g4^3*t^6.03)/(g1^3*g2^15) - (g2^5*t^6.14)/(g3^2*g4) - (g4*t^6.14)/g3 + t^6.18/g2^8 + (g3^2*t^6.32)/(g1*g2^3) + (g1*g3^2*t^6.33)/g2^5 + (g3^2*t^6.33)/g2^4 + (g3*g4*t^6.46)/(g1*g2^3) + (g3*g4*t^6.46)/(g1^2*g2^2) - (g1*t^6.47)/g4 + (g2*t^6.47)/g4 + (2*g3*g4*t^6.47)/g2^4 + (g3^3*g4^2*t^6.5)/(g1^2*g2^15) - (g1*t^6.61)/g3 - (g2*t^6.61)/g3 - (g2^2*t^6.61)/(g1*g3) + g2^5*g3*t^6.75 + g3^2*g4^2*t^6.75 + (g2^10*t^6.76)/g4^2 + (g3^3*g4*t^6.79)/(g1*g2^7) + (2*g3*t^6.93)/(g1*g2^2) + (g3^2*g4^2*t^6.93)/(g1*g2^7) + (g1*g3*t^6.94)/g2^4 + (g3*t^6.94)/g2^3 + (g3^3*g4*t^6.97)/(g1*g2^15) + (g4*t^7.07)/(g1*g2^2) + (g3*g4^3*t^7.07)/(g1*g2^7) - (g1*g2*t^7.08)/(g3*g4) + (g2^3*t^7.08)/(g1*g3*g4) + (g3^2*g4^2*t^7.11)/(g1^2*g2^14) + (g2^6*g3*t^7.22)/g4 + (g2^7*g3*t^7.22)/(g1*g4) + g1*g3^2*g4*t^7.22 + g2*g3^2*g4*t^7.22 + (g2^2*g3^2*g4*t^7.22)/g1 + (g1*g2^5*g3*t^7.23)/g4 + (g3^3*t^7.26)/g2^7 + g2^6*t^7.36 + (g2^7*t^7.36)/g1 + (g2^12*t^7.36)/(g1*g3*g4^2) + g1*g3*g4^2*t^7.36 + g2*g3*g4^2*t^7.36 + (g2^2*g3*g4^2*t^7.36)/g1 + (g2^11*t^7.37)/(g3*g4^2) + (g3^3*g4^3*t^7.39)/(g1^2*g2^10) + (g3^2*g4*t^7.4)/(g1^2*g2^5) + (g3^3*t^7.44)/g2^15 - t^7.55/g2^2 + (g3^2*g4*t^7.58)/(g1*g2^14) - (g4*t^7.68)/(g2^2*g3) + g1*g2*g3^2*t^7.69 + g2^2*g3^2*t^7.69 + (g2^3*g3^2*t^7.69)/g1 + (g2^4*g3^2*t^7.69)/g1^2 - (g2^3*t^7.69)/(g3^2*g4) + g1^2*g3^2*t^7.7 + (g2^4*g3*g4*t^7.82)/g1^2 + (g2^7*t^7.83)/g4 + (2*g2^8*t^7.83)/(g1*g4) + (g2^9*t^7.83)/(g1^2*g4) + 2*g1*g2*g3*g4*t^7.83 + 2*g2^2*g3*g4*t^7.83 + (2*g2^3*g3*g4*t^7.83)/g1 + (g1*g2^6*t^7.84)/g4 + g1^2*g3*g4*t^7.84 + (g3^3*g4^2*t^7.86)/(g1^2*g2^9) + (g3^3*g4^2*t^7.86)/(g1^3*g2^8) + (g3^2*t^7.87)/g2^6 + (g3^3*g4^2*t^7.87)/(g1*g2^10) + (g2^4*g4^2*t^7.96)/g1^2 + (g2^8*t^7.97)/(g1*g3) + (g2^9*t^7.97)/(g1^2*g3) + (g2^13*t^7.97)/(g1*g3^2*g4^2) + (g2^14*t^7.97)/(g1^2*g3^2*g4^2) + g1*g2*g4^2*t^7.97 + g2^2*g4^2*t^7.97 + (g2^3*g4^2*t^7.97)/g1 + g1^2*g4^2*t^7.98 + (g3*g4*t^8.)/(g1^3*g2^3) + (g3^2*g4^3*t^8.)/(g1^2*g2^9) + (g3^2*g4^3*t^8.)/(g1^3*g2^8) - t^8.01/(g1*g4) - (4*g3*g4*t^8.01)/(g1*g2^5) + t^8.02/(g2*g4) + (g3^4*g4^4*t^8.04)/(g1^4*g2^20) + (g3^2*t^8.05)/g2^14 - t^8.15/(g1*g3) + t^8.15/(g2*g3) + (g4^2*t^8.15)/g2^6 - (g4^2*t^8.15)/(g1*g2^5) + (g2^4*t^8.16)/(g3^2*g4^2) + (g2^3*g3^2*t^8.16)/g4 + (g3^3*g4*t^8.16)/g2^2 + (g3*g4*t^8.19)/(g1*g2^13) + (g2^5*g3*t^8.29)/g1^2 + g1*g2^2*g3*t^8.3 + 2*g2^3*g3*t^8.3 + (g2^4*g3*t^8.3)/g1 + (g2^8*t^8.3)/g4^2 + (g3^2*g4^2*t^8.3)/g2^2 + g1^2*g2*g3*t^8.31 + (g3^3*g4*t^8.33)/(g1^2*g2^8) + (g3^3*g4*t^8.34)/g2^10 + (g3^3*g4*t^8.34)/(g1*g2^9) + (g2^5*g4*t^8.43)/g1^2 + (g2^8*t^8.44)/(g3*g4) + (g2^9*t^8.44)/(g1*g3*g4) + (g2^10*t^8.44)/(g1^2*g3*g4) + g1*g2^2*g4*t^8.44 + 2*g2^3*g4*t^8.44 + (g2^4*g4*t^8.44)/g1 + (g3*g4^3*t^8.44)/g2^2 + (g2^13*t^8.45)/(g3^2*g4^3) + g1^2*g2*g4*t^8.45 + (g3^2*g4^2*t^8.47)/(g1^2*g2^8) + (g3^2*g4^2*t^8.47)/(g1^3*g2^7) - (g1*g3*t^8.48)/g2^6 - (4*g3*t^8.48)/g2^5 + (2*g3^2*g4^2*t^8.48)/(g1*g2^9) + (g3^4*g4^3*t^8.51)/(g1^3*g2^20) + (g3^3*t^8.62)/g1 - (g4*t^8.62)/g2^5 - (g4*t^8.62)/(g1*g2^4) - (g4*t^8.62)/(g1^2*g2^3) + (g1*g3^3*t^8.63)/g2^2 + (g3^3*t^8.63)/g2 + (g3*t^8.66)/g2^13 + t^8.76/g3^2 + (2*g3^2*g4*t^8.76)/g1 + (g3^3*g4^3*t^8.76)/(g1*g2^5) + (g2^4*g3*t^8.77)/g4 + (2*g2^5*g3*t^8.77)/(g1*g4) + (g1*g3^2*g4*t^8.77)/g2^2 + (g3^2*g4*t^8.77)/g2 + (g3^4*g4^2*t^8.8)/(g1^2*g2^12) + (g1*g3^3*t^8.81)/g2^10 + (g3^3*t^8.81)/g2^9 + (g3^3*t^8.81)/(g1*g2^8) + (g3*g4^2*t^8.9)/g1 + g2^4*t^8.91 + (g2^5*t^8.91)/g1 + (g2^9*t^8.91)/(g3*g4^2) + (g2^10*t^8.91)/(g1*g3*g4^2) + (g1*g3*g4^2*t^8.91)/g2^2 + (g3*g4^2*t^8.91)/g2 + (2*g3^2*g4*t^8.94)/(g1^2*g2^7) + (g3^3*g4^3*t^8.94)/(g1^2*g2^12) - (g1*g3*t^8.95)/(g2^5*g4) + (g3^2*g4*t^8.95)/g2^9 + (g3^2*g4*t^8.95)/(g1*g2^8) + (g3^4*g4^2*t^8.98)/(g1^2*g2^20) - t^4.55/(g2^2*y) - (g3*g4*t^6.55)/(g1*g2^7*y) - (g3*t^7.03)/(g2^7*y) + (g2^2*t^7.45)/y + (g3^2*g4*t^7.49)/(g1*g2^10*y) - t^7.64/(g2^6*y) + (g2^3*t^8.06)/(g3*y) + (g3*g4*t^8.1)/(g1*g2^9*y) + (g3^2*g4^2*t^8.38)/(g1*g2^5*y) + (g3*t^8.39)/(g1*y) + (g1*g2^3*t^8.54)/(g3*g4*y) - (g3^2*g4^2*t^8.56)/(g1^2*g2^12*y) + (g3*t^8.57)/(g2^9*y) + (g3^2*g4*t^8.85)/(g1*g2^4*y) + (g3^2*g4*t^8.85)/(g1^2*g2^3*y) + (g3*t^8.86)/(g4*y) + (2*g3^2*g4*t^8.86)/(g2^5*y) + (g2^2*t^8.99)/(g1^2*y) + (g3*g4^2*t^8.99)/(g1*g2^4*y) + (g3*g4^2*t^8.99)/(g1^2*g2^3*y) - (t^4.55*y)/g2^2 - (g3*g4*t^6.55*y)/(g1*g2^7) - (g3*t^7.03*y)/g2^7 + g2^2*t^7.45*y + (g3^2*g4*t^7.49*y)/(g1*g2^10) - (t^7.64*y)/g2^6 + (g2^3*t^8.06*y)/g3 + (g3*g4*t^8.1*y)/(g1*g2^9) + (g3^2*g4^2*t^8.38*y)/(g1*g2^5) + (g3*t^8.39*y)/g1 + (g1*g2^3*t^8.54*y)/(g3*g4) - (g3^2*g4^2*t^8.56*y)/(g1^2*g2^12) + (g3*t^8.57*y)/g2^9 + (g3^2*g4*t^8.85*y)/(g1*g2^4) + (g3^2*g4*t^8.85*y)/(g1^2*g2^3) + (g3*t^8.86*y)/g4 + (2*g3^2*g4*t^8.86*y)/g2^5 + (g2^2*t^8.99*y)/g1^2 + (g3*g4^2*t^8.99*y)/(g1*g2^4) + (g3*g4^2*t^8.99*y)/(g1^2*g2^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55678 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ 0.8484 1.0335 0.8208 [X:[], M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] t^2.08 + t^3.19 + t^3.32 + 2*t^3.35 + 2*t^3.84 + 3*t^3.87 + 3*t^3.89 + t^4.16 + t^4.38 + t^4.41 + t^4.43 + 3*t^4.92 + 2*t^4.95 + t^4.98 + t^5.27 + t^5.41 + 2*t^5.43 + 2*t^5.92 + 3*t^5.95 - 6*t^6. - t^4.59/y - t^4.59*y detail