Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55747 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ + $ M_2q_1\tilde{q}_2$ | 0.8687 | 1.0711 | 0.8111 | [X:[], M:[0.6988, 0.6988], q:[0.7365, 0.7365, 0.5647], qb:[0.7365, 0.5647, 0.5532], phi:[0.527]] | [X:[], M:[[-1, -5, 1, 1], [1, -2, -1, 0]], q:[[-1, 2, 0, 0], [1, 0, 0, 0], [0, 5, -1, -1]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, -2, 0, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2\tilde{q}_1$, $ q_1q_2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_1q_1\tilde{q}_3$ | $M_1q_1q_3$, $ M_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ | 0 | 2*t^2.1 + t^3.16 + 2*t^3.35 + t^3.39 + 3*t^3.87 + 4*t^3.9 + 3*t^4.19 + 3*t^4.42 + t^4.9 + 2*t^4.93 + 3*t^4.97 + 2*t^5.26 + 4*t^5.45 + 2*t^5.48 + 4*t^5.97 - 2*t^6.03 + 4*t^6.29 + t^6.32 + 2*t^6.52 - 2*t^6.55 + 3*t^6.71 + 2*t^6.74 + t^6.78 + 2*t^7. + 4*t^7.03 + 4*t^7.07 + 6*t^7.22 + 8*t^7.26 + 4*t^7.29 + 3*t^7.35 + 4*t^7.55 - t^7.58 - 2*t^7.62 + 5*t^7.74 + 10*t^7.77 + 7*t^7.81 + 6*t^8.06 - 2*t^8.1 - t^8.13 + 2*t^8.25 + 9*t^8.29 + 10*t^8.32 + 3*t^8.36 + 5*t^8.39 + 2*t^8.42 + 4*t^8.61 - 2*t^8.65 + t^8.68 + 3*t^8.77 + 10*t^8.8 + 9*t^8.84 + 8*t^8.87 - t^4.58/y - (2*t^6.68)/y + t^7.19/y + t^7.42/y - t^7.74/y + (2*t^8.26)/y + (4*t^8.45)/y + (4*t^8.48)/y - (3*t^8.77)/y + (6*t^8.97)/y - t^4.58*y - 2*t^6.68*y + t^7.19*y + t^7.42*y - t^7.74*y + 2*t^8.26*y + 4*t^8.45*y + 4*t^8.48*y - 3*t^8.77*y + 6*t^8.97*y | (g1*t^2.1)/(g2^2*g3) + (g3*g4*t^2.1)/(g1*g2^5) + t^3.16/g2^4 + (g2^5*t^3.35)/g3 + g3*g4*t^3.35 + (g2^5*t^3.39)/g4 + g1*g4*t^3.87 + g2*g4*t^3.87 + (g2^2*g4*t^3.87)/g1 + g1*g3*t^3.9 + g2*g3*t^3.9 + (g2^6*t^3.9)/(g3*g4) + (g2^7*t^3.9)/(g1*g3*g4) + (g1^2*t^4.19)/(g2^4*g3^2) + (g4*t^4.19)/g2^7 + (g3^2*g4^2*t^4.19)/(g1^2*g2^10) + g1*g2*t^4.42 + g2^2*t^4.42 + (g2^3*t^4.42)/g1 + (g4^2*t^4.9)/g2^2 + (g2^3*t^4.93)/g3 + (g3*g4*t^4.93)/g2^2 + (g3^2*t^4.97)/g2^2 + (g2^8*t^4.97)/(g3^2*g4^2) + (g2^3*t^4.97)/g4 + (g1*t^5.26)/(g2^6*g3) + (g3*g4*t^5.26)/(g1*g2^9) + (g1*g2^3*t^5.45)/g3^2 + (g4*t^5.45)/g1 + (g1*g4*t^5.45)/g2^2 + (g3^2*g4^2*t^5.45)/(g1*g2^5) + (g3*t^5.48)/g1 + (g1*g2^3*t^5.48)/(g3*g4) + (g1^2*g4*t^5.97)/(g2^2*g3) + (g1*g4*t^5.97)/(g2*g3) + (g3*g4^2*t^5.97)/(g1*g2^4) + (g3*g4^2*t^5.97)/(g1^2*g2^3) - 4*t^6. + (g1^2*t^6.)/g2^2 + (g2^2*t^6.)/g1^2 + (g1*g2^4*t^6.)/(g3^2*g4) + (g3^2*g4*t^6.)/(g1*g2^4) - (g2^5*t^6.03)/(g3*g4^2) - (g3*t^6.03)/g4 + (g1^3*t^6.29)/(g2^6*g3^3) + (g1*g4*t^6.29)/(g2^9*g3) + (g3*g4^2*t^6.29)/(g1*g2^12) + (g3^3*g4^3*t^6.29)/(g1^3*g2^15) + t^6.32/g2^8 + (g1^2*t^6.52)/(g2*g3) + (g2*t^6.52)/g3 - (g2^2*t^6.52)/(g1*g3) - (g1*g3*g4*t^6.52)/g2^5 + (g3*g4*t^6.52)/g2^4 + (g3*g4*t^6.52)/(g1^2*g2^2) - (g1*t^6.55)/g4 - (g2^2*t^6.55)/(g1*g4) + (g2^10*t^6.71)/g3^2 + g2^5*g4*t^6.71 + g3^2*g4^2*t^6.71 + g2^5*g3*t^6.74 + (g2^10*t^6.74)/(g3*g4) + (g2^10*t^6.78)/g4^2 + (g1*g4^2*t^7.)/(g2^4*g3) + (g3*g4^3*t^7.)/(g1*g2^7) + (g1*g2*t^7.03)/g3^2 + (g1*g4*t^7.03)/g2^4 + (g4*t^7.03)/(g1*g2^2) + (g3^2*g4^2*t^7.03)/(g1*g2^7) + (g1*g3*t^7.07)/g2^4 + (g1*g2^6*t^7.07)/(g3^3*g4^2) + (g2^3*t^7.07)/(g1*g3*g4) + (g3^3*g4*t^7.07)/(g1*g2^7) + (g1*g2^5*g4*t^7.22)/g3 + (g2^6*g4*t^7.22)/g3 + (g2^7*g4*t^7.22)/(g1*g3) + g1*g3*g4^2*t^7.22 + g2*g3*g4^2*t^7.22 + (g2^2*g3*g4^2*t^7.22)/g1 + g1*g2^5*t^7.26 + 2*g2^6*t^7.26 + (g2^7*t^7.26)/g1 + (g2^11*t^7.26)/(g3^2*g4) + (g2^12*t^7.26)/(g1*g3^2*g4) + g1*g3^2*g4*t^7.26 + g2*g3^2*g4*t^7.26 + (g2^11*t^7.29)/(g3*g4^2) + (g2^12*t^7.29)/(g1*g3*g4^2) + (g1*g2^5*g3*t^7.29)/g4 + (g2^6*g3*t^7.29)/g4 + (g1^2*t^7.35)/(g2^8*g3^2) + (g4*t^7.35)/g2^11 + (g3^2*g4^2*t^7.35)/(g1^2*g2^14) + (g1^2*g2*t^7.55)/g3^3 + (g1^2*g4*t^7.55)/(g2^4*g3) + (g3*g4^2*t^7.55)/(g1^2*g2^5) + (g3^3*g4^3*t^7.55)/(g1^2*g2^10) - t^7.58/g2^2 + (g1^2*g2*t^7.58)/(g3^2*g4) - (g2^3*t^7.58)/(g3^2*g4) - (g3^2*g4*t^7.58)/g2^7 + (g3^2*g4*t^7.58)/(g1^2*g2^5) - (g2^3*t^7.62)/(g3*g4^2) - (g3*t^7.62)/(g2^2*g4) + g1^2*g4^2*t^7.74 + g1*g2*g4^2*t^7.74 + g2^2*g4^2*t^7.74 + (g2^3*g4^2*t^7.74)/g1 + (g2^4*g4^2*t^7.74)/g1^2 + (g1*g2^6*t^7.77)/g3 + (g2^7*t^7.77)/g3 + (2*g2^8*t^7.77)/(g1*g3) + (g2^9*t^7.77)/(g1^2*g3) + g1^2*g3*g4*t^7.77 + 2*g1*g2*g3*g4*t^7.77 + g2^2*g3*g4*t^7.77 + (g2^3*g3*g4*t^7.77)/g1 + g1^2*g3^2*t^7.81 + g1*g2*g3^2*t^7.81 + (g2^13*t^7.81)/(g1*g3^2*g4^2) + (g2^14*t^7.81)/(g1^2*g3^2*g4^2) + (g1*g2^6*t^7.81)/g4 + (g2^7*t^7.81)/g4 + (g2^8*t^7.81)/(g1*g4) + (g1^3*g4*t^8.06)/(g2^4*g3^2) + (g1^2*g4*t^8.06)/(g2^3*g3^2) + (2*g4^2*t^8.06)/g2^6 + (g3^2*g4^3*t^8.06)/(g1^2*g2^9) + (g3^2*g4^3*t^8.06)/(g1^3*g2^8) + (g1^3*t^8.1)/(g2^4*g3) - (4*g1*t^8.1)/(g2^2*g3) + t^8.1/(g2*g3) + (g1^2*g2^2*t^8.1)/(g3^3*g4) + (g3*g4*t^8.1)/g2^6 - (4*g3*g4*t^8.1)/(g1*g2^5) + (g3*g4*t^8.1)/(g1^3*g2^3) + (g3^3*g4^2*t^8.1)/(g1^2*g2^9) + (g3^2*t^8.13)/g2^6 - (g3^2*t^8.13)/(g1*g2^5) - (g1*g2^3*t^8.13)/(g3^2*g4^2) + (g2^4*t^8.13)/(g3^2*g4^2) - t^8.13/(g1*g4) - (g1*t^8.13)/(g2^2*g4) + t^8.13/(g2*g4) + (g2^3*g4^2*t^8.25)/g3 + (g3*g4^3*t^8.25)/g2^2 + (g2^8*t^8.29)/g3^2 + g1^2*g2*g4*t^8.29 + g1*g2^2*g4*t^8.29 + 3*g2^3*g4*t^8.29 + (g2^4*g4*t^8.29)/g1 + (g2^5*g4*t^8.29)/g1^2 + (g3^2*g4^2*t^8.29)/g2^2 + g1^2*g2*g3*t^8.32 + g1*g2^2*g3*t^8.32 + 2*g2^3*g3*t^8.32 + (g2^13*t^8.32)/(g3^3*g4^2) + (2*g2^8*t^8.32)/(g3*g4) + (g2^9*t^8.32)/(g1*g3*g4) + (g2^10*t^8.32)/(g1^2*g3*g4) + (g3^3*g4*t^8.32)/g2^2 + (g2^13*t^8.36)/(g3^2*g4^3) + (g2^8*t^8.36)/g4^2 + (g2^3*g3^2*t^8.36)/g4 + (g1^4*t^8.39)/(g2^8*g3^4) + (g1^2*g4*t^8.39)/(g2^11*g3^2) + (g4^2*t^8.39)/g2^14 + (g3^2*g4^3*t^8.39)/(g1^2*g2^17) + (g3^4*g4^4*t^8.39)/(g1^4*g2^20) + (g1*t^8.42)/(g2^10*g3) + (g3*g4*t^8.42)/(g1*g2^13) + (g1^3*t^8.61)/(g2^3*g3^2) + (g1*t^8.61)/(g2*g3^2) - (g1^2*g4*t^8.61)/g2^7 + (g1*g4*t^8.61)/g2^6 + (g4*t^8.61)/(g1*g2^4) - (g4*t^8.61)/(g1^2*g2^3) + (g3^2*g4^2*t^8.61)/(g1*g2^9) + (g3^2*g4^2*t^8.61)/(g1^3*g2^7) - (g3*t^8.65)/(g1^2*g2^3) - (g1^2*t^8.65)/(g2^2*g3*g4) + t^8.68/g4^2 + (g4^3*t^8.77)/g1 + (g1*g4^3*t^8.77)/g2^2 + (g4^3*t^8.77)/g2 + (g1*g2^8*t^8.8)/g3^3 + (g1*g2^3*g4*t^8.8)/g3 + (g2^4*g4*t^8.8)/g3 + (2*g2^5*g4*t^8.8)/(g1*g3) + (g3*g4^2*t^8.8)/g1 + (2*g1*g3*g4^2*t^8.8)/g2^2 + (g3*g4^2*t^8.8)/g2 + (g3^3*g4^3*t^8.8)/(g1*g2^5) + g1*g2^3*t^8.84 + g2^4*t^8.84 + (g2^5*t^8.84)/g1 + (g1*g2^8*t^8.84)/(g3^2*g4) + (g2^9*t^8.84)/(g3^2*g4) + (g2^10*t^8.84)/(g1*g3^2*g4) + (g3^2*g4*t^8.84)/g1 + (g1*g3^2*g4*t^8.84)/g2^2 + (g3^2*g4*t^8.84)/g2 + (g1*g3^3*t^8.87)/g2^2 + (g3^3*t^8.87)/g2 + (g2^14*t^8.87)/(g3^3*g4^3) + (g2^15*t^8.87)/(g1*g3^3*g4^3) + (g1*g2^8*t^8.87)/(g3*g4^2) + (g2^9*t^8.87)/(g3*g4^2) + (g2^4*g3*t^8.87)/g4 + (g2^5*g3*t^8.87)/(g1*g4) - t^4.58/(g2^2*y) - (g1*t^6.68)/(g2^4*g3*y) - (g3*g4*t^6.68)/(g1*g2^7*y) + (g4*t^7.19)/(g2^7*y) + (g2^2*t^7.42)/y - t^7.74/(g2^6*y) + (g1*t^8.26)/(g2^6*g3*y) + (g3*g4*t^8.26)/(g1*g2^9*y) + (g1*g2^3*t^8.45)/(g3^2*y) + (g4*t^8.45)/(g1*y) + (g1*g4*t^8.45)/(g2^2*y) + (g3^2*g4^2*t^8.45)/(g1*g2^5*y) + (2*g3*t^8.48)/(g1*y) + (2*g1*g2^3*t^8.48)/(g3*g4*y) - (g1^2*t^8.77)/(g2^6*g3^2*y) - (g4*t^8.77)/(g2^9*y) - (g3^2*g4^2*t^8.77)/(g1^2*g2^12*y) + (g4*t^8.97)/(g3*y) + (g1^2*g4*t^8.97)/(g2^2*g3*y) + (g1*g4*t^8.97)/(g2*g3*y) + (g3*g4^2*t^8.97)/(g2^5*y) + (g3*g4^2*t^8.97)/(g1*g2^4*y) + (g3*g4^2*t^8.97)/(g1^2*g2^3*y) - (t^4.58*y)/g2^2 - (g1*t^6.68*y)/(g2^4*g3) - (g3*g4*t^6.68*y)/(g1*g2^7) + (g4*t^7.19*y)/g2^7 + g2^2*t^7.42*y - (t^7.74*y)/g2^6 + (g1*t^8.26*y)/(g2^6*g3) + (g3*g4*t^8.26*y)/(g1*g2^9) + (g1*g2^3*t^8.45*y)/g3^2 + (g4*t^8.45*y)/g1 + (g1*g4*t^8.45*y)/g2^2 + (g3^2*g4^2*t^8.45*y)/(g1*g2^5) + (2*g3*t^8.48*y)/g1 + (2*g1*g2^3*t^8.48*y)/(g3*g4) - (g1^2*t^8.77*y)/(g2^6*g3^2) - (g4*t^8.77*y)/g2^9 - (g3^2*g4^2*t^8.77*y)/(g1^2*g2^12) + (g4*t^8.97*y)/g3 + (g1^2*g4*t^8.97*y)/(g2^2*g3) + (g1*g4*t^8.97*y)/(g2*g3) + (g3*g4^2*t^8.97*y)/g2^5 + (g3*g4^2*t^8.97*y)/(g1*g2^4) + (g3*g4^2*t^8.97*y)/(g1^2*g2^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55678 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ | 0.8484 | 1.0335 | 0.8208 | [X:[], M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] | t^2.08 + t^3.19 + t^3.32 + 2*t^3.35 + 2*t^3.84 + 3*t^3.87 + 3*t^3.89 + t^4.16 + t^4.38 + t^4.41 + t^4.43 + 3*t^4.92 + 2*t^4.95 + t^4.98 + t^5.27 + t^5.41 + 2*t^5.43 + 2*t^5.92 + 3*t^5.95 - 6*t^6. - t^4.59/y - t^4.59*y | detail |