Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55645 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.6741 | 0.8576 | 0.7861 | [X:[1.6169], M:[0.3831, 0.6818, 1.1493, 0.8507, 0.724, 0.8507, 0.724], q:[0.8718, 0.7451], qb:[0.4464, 0.4042], phi:[0.3831]] | [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [-2, -4], [0, 3], [2, -5]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_7$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_7$, $ M_2M_5$, $ M_7^2$, $ M_5M_7$, $ M_2\phi_1^2$, $ M_5^2$, $ M_7\phi_1^2$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_7$, $ M_6M_7$, $ M_4M_5$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2\phi_1\tilde{q}_2^2$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ M_7\phi_1\tilde{q}_2^2$, $ M_7q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ M_7\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ | $\phi_1^3\tilde{q}_1\tilde{q}_2$ | -2 | t^2.05 + 2*t^2.17 + t^2.3 + 2*t^2.55 + 2*t^3.57 + t^3.7 + t^4.09 + 2*t^4.22 + 4*t^4.34 + 2*t^4.47 + 3*t^4.6 + 4*t^4.72 + 3*t^4.85 + 3*t^5.1 + 2*t^5.62 + 4*t^5.75 + 2*t^5.87 - 2*t^6. + 2*t^6.13 + t^6.14 + t^6.25 + 2*t^6.26 + 4*t^6.39 + 6*t^6.52 + 6*t^6.64 + 6*t^6.77 + 9*t^6.9 + 4*t^7.02 + 6*t^7.15 + 4*t^7.28 + 2*t^7.4 - 2*t^7.53 + 3*t^7.66 + 2*t^7.67 + 4*t^7.79 + 6*t^7.92 - 2*t^8.17 + t^8.18 + t^8.3 + 2*t^8.31 + 4*t^8.43 - 6*t^8.55 + 6*t^8.56 + 11*t^8.69 + 10*t^8.81 + 12*t^8.94 - t^4.15/y - t^6.19/y - (2*t^6.32)/y - t^6.45/y - t^6.7/y + (2*t^7.22)/y + (2*t^7.34)/y + (2*t^7.47)/y + (3*t^7.6)/y + (4*t^7.72)/y + (3*t^7.85)/y + (2*t^7.98)/y + (2*t^8.1)/y - t^8.24/y - (2*t^8.37)/y - (4*t^8.49)/y + (3*t^8.75)/y + (2*t^8.87)/y - t^4.15*y - t^6.19*y - 2*t^6.32*y - t^6.45*y - t^6.7*y + 2*t^7.22*y + 2*t^7.34*y + 2*t^7.47*y + 3*t^7.6*y + 4*t^7.72*y + 3*t^7.85*y + 2*t^7.98*y + 2*t^8.1*y - t^8.24*y - 2*t^8.37*y - 4*t^8.49*y + 3*t^8.75*y + 2*t^8.87*y | t^2.05/g2^7 + (g1^2*t^2.17)/g2^5 + t^2.17/(g1^2*g2^4) + t^2.3/g2^2 + 2*g2^3*t^2.55 + t^3.57/g1^2 + (g1^2*t^3.57)/g2 + g2^2*t^3.7 + t^4.09/g2^14 + (g1^2*t^4.22)/g2^12 + t^4.22/(g1^2*g2^11) + (g1^4*t^4.34)/g2^10 + (2*t^4.34)/g2^9 + t^4.34/(g1^4*g2^8) + (g1^2*t^4.47)/g2^7 + t^4.47/(g1^2*g2^6) + (3*t^4.6)/g2^4 + (2*g1^2*t^4.72)/g2^2 + (2*t^4.72)/(g1^2*g2) + 3*g2*t^4.85 + 3*g2^6*t^5.1 + (g1^2*t^5.62)/g2^8 + t^5.62/(g1^2*g2^7) + (g1^4*t^5.75)/g2^6 + (2*t^5.75)/g2^5 + t^5.75/(g1^4*g2^4) + (g1^2*t^5.87)/g2^3 + t^5.87/(g1^2*g2^2) - 2*t^6. + g1^2*g2^2*t^6.13 + (g2^3*t^6.13)/g1^2 + t^6.14/g2^21 + g2^5*t^6.25 + (g1^2*t^6.26)/g2^19 + t^6.26/(g1^2*g2^18) + (g1^4*t^6.39)/g2^17 + (2*t^6.39)/g2^16 + t^6.39/(g1^4*g2^15) + (g1^6*t^6.52)/g2^15 + (2*g1^2*t^6.52)/g2^14 + (2*t^6.52)/(g1^2*g2^13) + t^6.52/(g1^6*g2^12) + (g1^4*t^6.64)/g2^12 + (4*t^6.64)/g2^11 + t^6.64/(g1^4*g2^10) + (3*g1^2*t^6.77)/g2^9 + (3*t^6.77)/(g1^2*g2^8) + (2*g1^4*t^6.9)/g2^7 + (5*t^6.9)/g2^6 + (2*t^6.9)/(g1^4*g2^5) + (2*g1^2*t^7.02)/g2^4 + (2*t^7.02)/(g1^2*g2^3) + t^7.15/g1^4 + (g1^4*t^7.15)/g2^2 + (4*t^7.15)/g2 + 2*g1^2*g2*t^7.28 + (2*g2^2*t^7.28)/g1^2 + 2*g2^4*t^7.4 - g1^2*g2^6*t^7.53 - (g2^7*t^7.53)/g1^2 + 3*g2^9*t^7.66 + (g1^2*t^7.67)/g2^15 + t^7.67/(g1^2*g2^14) + (g1^4*t^7.79)/g2^13 + (2*t^7.79)/g2^12 + t^7.79/(g1^4*g2^11) + (g1^6*t^7.92)/g2^11 + (2*g1^2*t^7.92)/g2^10 + (2*t^7.92)/(g1^2*g2^9) + t^7.92/(g1^6*g2^8) + (g1^4*t^8.05)/g2^8 - (2*t^8.05)/g2^7 + t^8.05/(g1^4*g2^6) - (g1^2*t^8.17)/g2^5 - t^8.17/(g1^2*g2^4) + t^8.18/g2^28 + (g1^4*t^8.3)/g2^3 - t^8.3/g2^2 + t^8.3/(g1^4*g2) + (g1^2*t^8.31)/g2^26 + t^8.31/(g1^2*g2^25) + (g1^4*t^8.43)/g2^24 + (2*t^8.43)/g2^23 + t^8.43/(g1^4*g2^22) - 6*g2^3*t^8.55 + (g1^6*t^8.56)/g2^22 + (2*g1^2*t^8.56)/g2^21 + (2*t^8.56)/(g1^2*g2^20) + t^8.56/(g1^6*g2^19) + (g1^8*t^8.69)/g2^20 + (2*g1^4*t^8.69)/g2^19 + (5*t^8.69)/g2^18 + (2*t^8.69)/(g1^4*g2^17) + t^8.69/(g1^8*g2^16) + (g1^6*t^8.81)/g2^17 + (4*g1^2*t^8.81)/g2^16 + (4*t^8.81)/(g1^2*g2^15) + t^8.81/(g1^6*g2^14) + (3*g1^4*t^8.94)/g2^14 + (6*t^8.94)/g2^13 + (3*t^8.94)/(g1^4*g2^12) - t^4.15/(g2*y) - t^6.19/(g2^8*y) - (g1^2*t^6.32)/(g2^6*y) - t^6.32/(g1^2*g2^5*y) - t^6.45/(g2^3*y) - (g2^2*t^6.7)/y + (g1^2*t^7.22)/(g2^12*y) + t^7.22/(g1^2*g2^11*y) + (2*t^7.34)/(g2^9*y) + (g1^2*t^7.47)/(g2^7*y) + t^7.47/(g1^2*g2^6*y) + (3*t^7.6)/(g2^4*y) + (2*g1^2*t^7.72)/(g2^2*y) + (2*t^7.72)/(g1^2*g2*y) + (3*g2*t^7.85)/y + (g1^2*g2^3*t^7.98)/y + (g2^4*t^7.98)/(g1^2*y) + (2*g2^6*t^8.1)/y - t^8.24/(g2^15*y) - (g1^2*t^8.37)/(g2^13*y) - t^8.37/(g1^2*g2^12*y) - (g1^4*t^8.49)/(g2^11*y) - (2*t^8.49)/(g2^10*y) - t^8.49/(g1^4*g2^9*y) + (g1^4*t^8.75)/(g2^6*y) + t^8.75/(g2^5*y) + t^8.75/(g1^4*g2^4*y) + (g1^2*t^8.87)/(g2^3*y) + t^8.87/(g1^2*g2^2*y) - (t^4.15*y)/g2 - (t^6.19*y)/g2^8 - (g1^2*t^6.32*y)/g2^6 - (t^6.32*y)/(g1^2*g2^5) - (t^6.45*y)/g2^3 - g2^2*t^6.7*y + (g1^2*t^7.22*y)/g2^12 + (t^7.22*y)/(g1^2*g2^11) + (2*t^7.34*y)/g2^9 + (g1^2*t^7.47*y)/g2^7 + (t^7.47*y)/(g1^2*g2^6) + (3*t^7.6*y)/g2^4 + (2*g1^2*t^7.72*y)/g2^2 + (2*t^7.72*y)/(g1^2*g2) + 3*g2*t^7.85*y + g1^2*g2^3*t^7.98*y + (g2^4*t^7.98*y)/g1^2 + 2*g2^6*t^8.1*y - (t^8.24*y)/g2^15 - (g1^2*t^8.37*y)/g2^13 - (t^8.37*y)/(g1^2*g2^12) - (g1^4*t^8.49*y)/g2^11 - (2*t^8.49*y)/g2^10 - (t^8.49*y)/(g1^4*g2^9) + (g1^4*t^8.75*y)/g2^6 + (t^8.75*y)/g2^5 + (t^8.75*y)/(g1^4*g2^4) + (g1^2*t^8.87*y)/g2^3 + (t^8.87*y)/(g1^2*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47265 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ | 0.6546 | 0.8215 | 0.7969 | [X:[1.6145], M:[0.3855, 0.6986, 1.1566, 0.8434, 0.7153, 0.8434], q:[0.8713, 0.7432], qb:[0.4301, 0.4134], phi:[0.3855]] | t^2.1 + t^2.15 + t^2.31 + 2*t^2.53 + t^3.52 + t^3.64 + t^3.69 + t^3.74 + t^4.19 + t^4.24 + t^4.29 + t^4.41 + t^4.46 + 3*t^4.63 + 2*t^4.68 + 3*t^4.84 + 3*t^5.06 + t^5.62 + t^5.67 + t^5.73 + t^5.78 + 2*t^5.83 + t^5.88 - 2*t^6. - t^4.16/y - t^4.16*y | detail |