Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47265 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ | 0.6546 | 0.8215 | 0.7969 | [X:[1.6145], M:[0.3855, 0.6986, 1.1566, 0.8434, 0.7153, 0.8434], q:[0.8713, 0.7432], qb:[0.4301, 0.4134], phi:[0.3855]] | [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [-2, -4], [0, 3]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1^2$ | $\phi_1^3\tilde{q}_1\tilde{q}_2$ | -2 | t^2.1 + t^2.15 + t^2.31 + 2*t^2.53 + t^3.52 + t^3.64 + t^3.69 + t^3.74 + t^4.19 + t^4.24 + t^4.29 + t^4.41 + t^4.46 + 3*t^4.63 + 2*t^4.68 + 3*t^4.84 + 3*t^5.06 + t^5.62 + t^5.67 + t^5.73 + t^5.78 + 2*t^5.83 + t^5.88 - 2*t^6. + 2*t^6.05 + t^6.17 + t^6.22 + 2*t^6.27 + t^6.29 + t^6.34 + t^6.39 + t^6.44 + t^6.5 + t^6.56 + t^6.61 + 3*t^6.72 + 3*t^6.77 + 2*t^6.82 + 3*t^6.94 + 2*t^6.99 + t^7.04 - t^7.11 + 4*t^7.16 + 2*t^7.21 + t^7.26 + t^7.27 - t^7.32 + 3*t^7.37 + t^7.47 - t^7.54 + 3*t^7.59 + t^7.71 + t^7.76 + t^7.81 + t^7.83 + t^7.88 + 2*t^7.93 + 2*t^7.98 + t^8.03 - 3*t^8.1 + 2*t^8.2 + t^8.26 - 2*t^8.31 + 3*t^8.36 + t^8.38 + 2*t^8.41 + t^8.43 - 5*t^8.53 + 4*t^8.58 + t^8.6 + t^8.65 + t^8.7 + t^8.75 + 3*t^8.8 + 3*t^8.82 + 3*t^8.87 + 3*t^8.92 + 2*t^8.97 - t^4.16/y - t^6.25/y - t^6.3/y - t^6.47/y - t^6.69/y + t^7.24/y + t^7.41/y + t^7.46/y + (3*t^7.63)/y + (2*t^7.68)/y + (3*t^7.84)/y + t^8.01/y + (2*t^8.06)/y - t^8.35/y - t^8.4/y - t^8.45/y - t^8.57/y + t^8.67/y + t^8.73/y + (2*t^8.83)/y + t^8.88/y + t^8.95/y - t^4.16*y - t^6.25*y - t^6.3*y - t^6.47*y - t^6.69*y + t^7.24*y + t^7.41*y + t^7.46*y + 3*t^7.63*y + 2*t^7.68*y + 3*t^7.84*y + t^8.01*y + 2*t^8.06*y - t^8.35*y - t^8.4*y - t^8.45*y - t^8.57*y + t^8.67*y + t^8.73*y + 2*t^8.83*y + t^8.88*y + t^8.95*y | t^2.1/g2^7 + t^2.15/(g1^2*g2^4) + t^2.31/g2^2 + 2*g2^3*t^2.53 + t^3.52/g1^2 + (g1^2*t^3.64)/g2 + g2^2*t^3.69 + (g2^5*t^3.74)/g1^2 + t^4.19/g2^14 + t^4.24/(g1^2*g2^11) + t^4.29/(g1^4*g2^8) + t^4.41/g2^9 + t^4.46/(g1^2*g2^6) + (3*t^4.63)/g2^4 + (2*t^4.68)/(g1^2*g2) + 3*g2*t^4.84 + 3*g2^6*t^5.06 + t^5.62/(g1^2*g2^7) + t^5.67/(g1^4*g2^4) + (g1^2*t^5.73)/g2^8 + t^5.78/g2^5 + (2*t^5.83)/(g1^2*g2^2) + (g2*t^5.88)/g1^4 - 2*t^6. + (2*g2^3*t^6.05)/g1^2 + g1^2*g2^2*t^6.17 + g2^5*t^6.22 + (2*g2^8*t^6.27)/g1^2 + t^6.29/g2^21 + t^6.34/(g1^2*g2^18) + t^6.39/(g1^4*g2^15) + t^6.44/(g1^6*g2^12) + t^6.5/g2^16 + t^6.56/(g1^2*g2^13) + t^6.61/(g1^4*g2^10) + (3*t^6.72)/g2^11 + (3*t^6.77)/(g1^2*g2^8) + (2*t^6.82)/(g1^4*g2^5) + (3*t^6.94)/g2^6 + (2*t^6.99)/(g1^2*g2^3) + t^7.04/g1^4 - (g1^2*t^7.11)/g2^4 + (4*t^7.16)/g2 + (2*g2^2*t^7.21)/g1^2 + (g2^5*t^7.26)/g1^4 + (g1^4*t^7.27)/g2^2 - g1^2*g2*t^7.32 + 3*g2^4*t^7.37 + (g2^10*t^7.47)/g1^4 - g1^2*g2^6*t^7.54 + 3*g2^9*t^7.59 + t^7.71/(g1^2*g2^14) + t^7.76/(g1^4*g2^11) + t^7.81/(g1^6*g2^8) + (g1^2*t^7.83)/g2^15 + t^7.88/g2^12 + (2*t^7.93)/(g1^2*g2^9) + (2*t^7.98)/(g1^4*g2^6) + t^8.03/(g1^6*g2^3) - (3*t^8.1)/g2^7 + (2*t^8.2)/(g1^4*g2) + (g1^2*t^8.26)/g2^5 - (2*t^8.31)/g2^2 + (3*g2*t^8.36)/g1^2 + t^8.38/g2^28 + (2*g2^4*t^8.41)/g1^4 + t^8.43/(g1^2*g2^25) - g1^2*t^8.48 + t^8.48/(g1^4*g2^22) + t^8.53/(g1^6*g2^19) - 6*g2^3*t^8.53 + t^8.58/(g1^8*g2^16) + (3*g2^6*t^8.58)/g1^2 + t^8.6/g2^23 + t^8.65/(g1^2*g2^20) + t^8.7/(g1^4*g2^17) + t^8.75/(g1^6*g2^14) + (3*g2^11*t^8.8)/g1^2 + (3*t^8.82)/g2^18 + (3*t^8.87)/(g1^2*g2^15) + (3*t^8.92)/(g1^4*g2^12) + (2*t^8.97)/(g1^6*g2^9) - t^4.16/(g2*y) - t^6.25/(g2^8*y) - t^6.3/(g1^2*g2^5*y) - t^6.47/(g2^3*y) - (g2^2*t^6.69)/y + t^7.24/(g1^2*g2^11*y) + t^7.41/(g2^9*y) + t^7.46/(g1^2*g2^6*y) + (3*t^7.63)/(g2^4*y) + (2*t^7.68)/(g1^2*g2*y) + (3*g2*t^7.84)/y + (g1^2*g2^3*t^8.01)/y + (2*g2^6*t^8.06)/y - t^8.35/(g2^15*y) - t^8.4/(g1^2*g2^12*y) - t^8.45/(g1^4*g2^9*y) - t^8.57/(g2^10*y) + t^8.67/(g1^4*g2^4*y) + (g1^2*t^8.73)/(g2^8*y) + (2*t^8.83)/(g1^2*g2^2*y) + (g2*t^8.88)/(g1^4*y) + (g1^2*t^8.95)/(g2^3*y) - (t^4.16*y)/g2 - (t^6.25*y)/g2^8 - (t^6.3*y)/(g1^2*g2^5) - (t^6.47*y)/g2^3 - g2^2*t^6.69*y + (t^7.24*y)/(g1^2*g2^11) + (t^7.41*y)/g2^9 + (t^7.46*y)/(g1^2*g2^6) + (3*t^7.63*y)/g2^4 + (2*t^7.68*y)/(g1^2*g2) + 3*g2*t^7.84*y + g1^2*g2^3*t^8.01*y + 2*g2^6*t^8.06*y - (t^8.35*y)/g2^15 - (t^8.4*y)/(g1^2*g2^12) - (t^8.45*y)/(g1^4*g2^9) - (t^8.57*y)/g2^10 + (t^8.67*y)/(g1^4*g2^4) + (g1^2*t^8.73*y)/g2^8 + (2*t^8.83*y)/(g1^2*g2^2) + (g2*t^8.88*y)/g1^4 + (g1^2*t^8.95*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55459 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_2M_5$ | 0.5831 | 0.734 | 0.7944 | [X:[1.5732], M:[0.4268, 0.9873, 1.2803, 0.7197, 1.0127, 0.7197], q:[0.6401, 0.9331], qb:[0.3725, 0.3472], phi:[0.4268]] | 2*t^2.16 + t^2.56 + t^2.96 + t^3.04 + t^3.36 + t^3.44 + t^3.52 + t^3.92 + 3*t^4.32 + 3*t^4.72 + 3*t^5.12 + 2*t^5.2 + 2*t^5.52 + 2*t^5.6 + 2*t^5.67 + t^5.92 - t^6. - t^4.28/y - t^4.28*y | detail | |
55626 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_5\phi_1\tilde{q}_1^2$ | 0.6543 | 0.8201 | 0.7978 | [X:[1.615], M:[0.385, 0.6947, 1.1549, 0.8451, 0.7323, 0.8451], q:[0.8639, 0.7511], qb:[0.4414, 0.4038], phi:[0.385]] | t^2.08 + t^2.2 + t^2.31 + 2*t^2.54 + 2*t^3.58 + t^3.69 + t^3.8 + t^4.17 + t^4.28 + 2*t^4.39 + t^4.51 + 3*t^4.62 + 2*t^4.73 + 3*t^4.85 + 3*t^5.07 + 2*t^5.66 + 2*t^5.77 + 2*t^5.89 - t^6. - t^4.15/y - t^4.15*y | detail | |
55632 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6728 | 0.8544 | 0.7875 | [X:[1.6159], M:[0.3841, 0.6889, 1.1524, 0.8476, 0.7107, 0.8476, 0.7683], q:[0.8764, 0.7395], qb:[0.4347, 0.4129], phi:[0.3841]] | t^2.07 + t^2.13 + 2*t^2.3 + 2*t^2.54 + t^3.52 + t^3.63 + t^3.76 + t^4.13 + t^4.2 + t^4.26 + 2*t^4.37 + 2*t^4.44 + 5*t^4.61 + 2*t^4.68 + 5*t^4.85 + 3*t^5.09 + t^5.59 + t^5.65 + t^5.7 + 2*t^5.83 + t^5.89 + t^5.93 - 3*t^6. - t^4.15/y - t^4.15*y | detail | |
55645 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.6741 | 0.8576 | 0.7861 | [X:[1.6169], M:[0.3831, 0.6818, 1.1493, 0.8507, 0.724, 0.8507, 0.724], q:[0.8718, 0.7451], qb:[0.4464, 0.4042], phi:[0.3831]] | t^2.05 + 2*t^2.17 + t^2.3 + 2*t^2.55 + 2*t^3.57 + t^3.7 + t^4.09 + 2*t^4.22 + 4*t^4.34 + 2*t^4.47 + 3*t^4.6 + 4*t^4.72 + 3*t^4.85 + 3*t^5.1 + 2*t^5.62 + 4*t^5.75 + 2*t^5.87 - 2*t^6. - t^4.15/y - t^4.15*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46678 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ | 0.6414 | 0.7996 | 0.8022 | [X:[1.6177], M:[0.3823, 0.676, 1.1468, 0.8532, 0.7046], q:[0.8831, 0.7346], qb:[0.4409, 0.4122], phi:[0.3823]] | t^2.03 + t^2.11 + t^2.29 + t^2.56 + t^3.44 + t^3.53 + t^3.62 + t^3.71 + t^3.79 + t^4.06 + t^4.14 + t^4.23 + t^4.32 + t^4.41 + 2*t^4.59 + t^4.67 + 2*t^4.85 + t^5.12 + t^5.47 + 2*t^5.55 + t^5.64 + t^5.65 + 2*t^5.73 + 2*t^5.82 + t^5.91 - t^6. - t^4.15/y - t^4.15*y | detail |