Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3380 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7q_1\tilde{q}_2$ 0.6741 0.8576 0.7861 [X:[1.6169], M:[0.8507, 0.6818, 1.1493, 0.3831, 0.8507, 0.724, 0.724], q:[0.4042, 0.7451], qb:[0.4464, 0.8718], phi:[0.3831]] [X:[[0, 1]], M:[[0, 3], [0, -7], [0, -3], [0, -1], [0, 3], [2, -13], [-2, 4]], q:[[1, -4], [-1, 1]], qb:[[-1, 7], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_1$, $ M_5$, $ \phi_1q_1^2$, $ q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ M_2^2$, $ M_2M_6$, $ M_2M_7$, $ M_6^2$, $ M_6M_7$, $ M_2\phi_1^2$, $ M_7^2$, $ M_6\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_2M_5$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ M_1M_6$, $ M_5M_6$, $ M_1M_7$, $ M_5M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ X_1$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1q_1^2$, $ \phi_1q_2^2$, $ M_6\phi_1q_1^2$, $ M_7\phi_1q_1^2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1^3q_1^2$, $ M_6\phi_1q_1\tilde{q}_1$, $ M_7\phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$ $\phi_1^3q_1\tilde{q}_1$ -2 t^2.05 + 2*t^2.17 + t^2.3 + 2*t^2.55 + 2*t^3.57 + t^3.7 + t^4.09 + 2*t^4.22 + 4*t^4.34 + 2*t^4.47 + 3*t^4.6 + 4*t^4.72 + 3*t^4.85 + 3*t^5.1 + 2*t^5.62 + 4*t^5.75 + 2*t^5.87 - 2*t^6. + 2*t^6.13 + t^6.14 + t^6.25 + 2*t^6.26 + 4*t^6.39 + 6*t^6.52 + 6*t^6.64 + 6*t^6.77 + 9*t^6.9 + 4*t^7.02 + 6*t^7.15 + 4*t^7.28 + 2*t^7.4 - 2*t^7.53 + 3*t^7.66 + 2*t^7.67 + 4*t^7.79 + 6*t^7.92 - 2*t^8.17 + t^8.18 + t^8.3 + 2*t^8.31 + 4*t^8.43 - 6*t^8.55 + 6*t^8.56 + 11*t^8.69 + 10*t^8.81 + 12*t^8.94 - t^4.15/y - t^6.19/y - (2*t^6.32)/y - t^6.45/y - t^6.7/y + (2*t^7.22)/y + (2*t^7.34)/y + (2*t^7.47)/y + (3*t^7.6)/y + (4*t^7.72)/y + (3*t^7.85)/y + (2*t^7.98)/y + (2*t^8.1)/y - t^8.24/y - (2*t^8.37)/y - (4*t^8.49)/y + (3*t^8.75)/y + (2*t^8.87)/y - t^4.15*y - t^6.19*y - 2*t^6.32*y - t^6.45*y - t^6.7*y + 2*t^7.22*y + 2*t^7.34*y + 2*t^7.47*y + 3*t^7.6*y + 4*t^7.72*y + 3*t^7.85*y + 2*t^7.98*y + 2*t^8.1*y - t^8.24*y - 2*t^8.37*y - 4*t^8.49*y + 3*t^8.75*y + 2*t^8.87*y t^2.05/g2^7 + (g1^2*t^2.17)/g2^13 + (g2^4*t^2.17)/g1^2 + t^2.3/g2^2 + 2*g2^3*t^2.55 + (g1^2*t^3.57)/g2^9 + (g2^8*t^3.57)/g1^2 + g2^2*t^3.7 + t^4.09/g2^14 + (g1^2*t^4.22)/g2^20 + t^4.22/(g1^2*g2^3) + (g1^4*t^4.34)/g2^26 + (2*t^4.34)/g2^9 + (g2^8*t^4.34)/g1^4 + (g1^2*t^4.47)/g2^15 + (g2^2*t^4.47)/g1^2 + (3*t^4.6)/g2^4 + (2*g1^2*t^4.72)/g2^10 + (2*g2^7*t^4.72)/g1^2 + 3*g2*t^4.85 + 3*g2^6*t^5.1 + (g1^2*t^5.62)/g2^16 + (g2*t^5.62)/g1^2 + (g1^4*t^5.75)/g2^22 + (2*t^5.75)/g2^5 + (g2^12*t^5.75)/g1^4 + (g1^2*t^5.87)/g2^11 + (g2^6*t^5.87)/g1^2 - 2*t^6. + (g1^2*t^6.13)/g2^6 + (g2^11*t^6.13)/g1^2 + t^6.14/g2^21 + g2^5*t^6.25 + (g1^2*t^6.26)/g2^27 + t^6.26/(g1^2*g2^10) + (g1^4*t^6.39)/g2^33 + (2*t^6.39)/g2^16 + (g2*t^6.39)/g1^4 + (g1^6*t^6.52)/g2^39 + (2*g1^2*t^6.52)/g2^22 + (2*t^6.52)/(g1^2*g2^5) + (g2^12*t^6.52)/g1^6 + (g1^4*t^6.64)/g2^28 + (4*t^6.64)/g2^11 + (g2^6*t^6.64)/g1^4 + (3*t^6.77)/g1^2 + (3*g1^2*t^6.77)/g2^17 + (2*g1^4*t^6.9)/g2^23 + (5*t^6.9)/g2^6 + (2*g2^11*t^6.9)/g1^4 + (2*g1^2*t^7.02)/g2^12 + (2*g2^5*t^7.02)/g1^2 + (g1^4*t^7.15)/g2^18 + (4*t^7.15)/g2 + (g2^16*t^7.15)/g1^4 + (2*g1^2*t^7.28)/g2^7 + (2*g2^10*t^7.28)/g1^2 + 2*g2^4*t^7.4 - (g1^2*t^7.53)/g2^2 - (g2^15*t^7.53)/g1^2 + 3*g2^9*t^7.66 + (g1^2*t^7.67)/g2^23 + t^7.67/(g1^2*g2^6) + (g1^4*t^7.79)/g2^29 + (2*t^7.79)/g2^12 + (g2^5*t^7.79)/g1^4 + (g1^6*t^7.92)/g2^35 + (2*g1^2*t^7.92)/g2^18 + (2*t^7.92)/(g1^2*g2) + (g2^16*t^7.92)/g1^6 + (g1^4*t^8.05)/g2^24 - (2*t^8.05)/g2^7 + (g2^10*t^8.05)/g1^4 - (g1^2*t^8.17)/g2^13 - (g2^4*t^8.17)/g1^2 + t^8.18/g2^28 + (g1^4*t^8.3)/g2^19 - t^8.3/g2^2 + (g2^15*t^8.3)/g1^4 + (g1^2*t^8.31)/g2^34 + t^8.31/(g1^2*g2^17) + (g1^4*t^8.43)/g2^40 + (2*t^8.43)/g2^23 + t^8.43/(g1^4*g2^6) - 6*g2^3*t^8.55 + (g1^6*t^8.56)/g2^46 + (2*g1^2*t^8.56)/g2^29 + (2*t^8.56)/(g1^2*g2^12) + (g2^5*t^8.56)/g1^6 + (g1^8*t^8.69)/g2^52 + (2*g1^4*t^8.69)/g2^35 + (5*t^8.69)/g2^18 + (2*t^8.69)/(g1^4*g2) + (g2^16*t^8.69)/g1^8 + (g1^6*t^8.81)/g2^41 + (4*g1^2*t^8.81)/g2^24 + (4*t^8.81)/(g1^2*g2^7) + (g2^10*t^8.81)/g1^6 + (3*g1^4*t^8.94)/g2^30 + (6*t^8.94)/g2^13 + (3*g2^4*t^8.94)/g1^4 - t^4.15/(g2*y) - t^6.19/(g2^8*y) - (g1^2*t^6.32)/(g2^14*y) - (g2^3*t^6.32)/(g1^2*y) - t^6.45/(g2^3*y) - (g2^2*t^6.7)/y + (g1^2*t^7.22)/(g2^20*y) + t^7.22/(g1^2*g2^3*y) + (2*t^7.34)/(g2^9*y) + (g1^2*t^7.47)/(g2^15*y) + (g2^2*t^7.47)/(g1^2*y) + (3*t^7.6)/(g2^4*y) + (2*g1^2*t^7.72)/(g2^10*y) + (2*g2^7*t^7.72)/(g1^2*y) + (3*g2*t^7.85)/y + (g1^2*t^7.98)/(g2^5*y) + (g2^12*t^7.98)/(g1^2*y) + (2*g2^6*t^8.1)/y - t^8.24/(g2^15*y) - (g1^2*t^8.37)/(g2^21*y) - t^8.37/(g1^2*g2^4*y) - (g1^4*t^8.49)/(g2^27*y) - (2*t^8.49)/(g2^10*y) - (g2^7*t^8.49)/(g1^4*y) + (g1^4*t^8.75)/(g2^22*y) + t^8.75/(g2^5*y) + (g2^12*t^8.75)/(g1^4*y) + (g1^2*t^8.87)/(g2^11*y) + (g2^6*t^8.87)/(g1^2*y) - (t^4.15*y)/g2 - (t^6.19*y)/g2^8 - (g1^2*t^6.32*y)/g2^14 - (g2^3*t^6.32*y)/g1^2 - (t^6.45*y)/g2^3 - g2^2*t^6.7*y + (g1^2*t^7.22*y)/g2^20 + (t^7.22*y)/(g1^2*g2^3) + (2*t^7.34*y)/g2^9 + (g1^2*t^7.47*y)/g2^15 + (g2^2*t^7.47*y)/g1^2 + (3*t^7.6*y)/g2^4 + (2*g1^2*t^7.72*y)/g2^10 + (2*g2^7*t^7.72*y)/g1^2 + 3*g2*t^7.85*y + (g1^2*t^7.98*y)/g2^5 + (g2^12*t^7.98*y)/g1^2 + 2*g2^6*t^8.1*y - (t^8.24*y)/g2^15 - (g1^2*t^8.37*y)/g2^21 - (t^8.37*y)/(g1^2*g2^4) - (g1^4*t^8.49*y)/g2^27 - (2*t^8.49*y)/g2^10 - (g2^7*t^8.49*y)/g1^4 + (g1^4*t^8.75*y)/g2^22 + (t^8.75*y)/g2^5 + (g2^12*t^8.75*y)/g1^4 + (g1^2*t^8.87*y)/g2^11 + (g2^6*t^8.87*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3854 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1^2$ 0.6559 0.8243 0.7957 [X:[1.6157], M:[0.8471, 0.6901, 1.1529, 0.3843, 0.8471, 0.7294, 0.7294, 1.2314], q:[0.4039, 0.749], qb:[0.4432, 0.8667], phi:[0.3843]] t^2.07 + 2*t^2.19 + 2*t^2.54 + 2*t^3.58 + 2*t^3.69 + t^4.14 + 2*t^4.26 + 3*t^4.38 + 2*t^4.61 + 4*t^4.73 + t^4.85 + 3*t^5.08 + 2*t^5.65 + 5*t^5.76 + 2*t^5.88 - 3*t^6. - t^4.15/y - t^4.15*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2831 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6546 0.8215 0.7969 [X:[1.6145], M:[0.8434, 0.6986, 1.1566, 0.3855, 0.8434, 0.7153], q:[0.3939, 0.7627], qb:[0.4496, 0.8518], phi:[0.3855]] t^2.1 + t^2.15 + t^2.31 + 2*t^2.53 + t^3.52 + t^3.64 + t^3.69 + t^3.74 + t^4.19 + t^4.24 + t^4.29 + t^4.41 + t^4.46 + 3*t^4.63 + 2*t^4.68 + 3*t^4.84 + 3*t^5.06 + t^5.62 + t^5.67 + t^5.73 + t^5.78 + 2*t^5.83 + t^5.88 - 2*t^6. - t^4.16/y - t^4.16*y detail